Mostrar el registro sencillo del ítem
dc.contributor.author | Benavides Cobos, Diego | |
dc.contributor.author | Cisnal de la Rica, Ana | |
dc.contributor.author | Fontúrbel Mediavilla, Carlos | |
dc.contributor.author | Fuente López, Eusebio de la | |
dc.contributor.author | Fraile Marinero, Juan Carlos | |
dc.date.accessioned | 2024-06-28T10:56:37Z | |
dc.date.available | 2024-06-28T10:56:37Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Sensors, 2024, Vol. 24, Nº. 13, 4191 | es |
dc.identifier.issn | 1424-8220 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68303 | |
dc.description | Producción Científica | es |
dc.description.abstract | Partially automated robotic systems, such as camera holders, represent a pivotal step towards enhancing efficiency and precision in surgical procedures. Therefore, this paper introduces an approach for real-time tool localization in laparoscopy surgery using convolutional neural networks. The proposed model, based on two Hourglass modules in series, can localize up to two surgical tools simultaneously. This study utilized three datasets: the ITAP dataset, alongside two publicly available datasets, namely Atlas Dione and EndoVis Challenge. Three variations of the Hourglass-based models were proposed, with the best model achieving high accuracy (92.86%) and frame rates (27.64 FPS), suitable for integration into robotic systems. An evaluation on an independent test set yielded slightly lower accuracy, indicating limited generalizability. The model was further analyzed using the Grad-CAM technique to gain insights into its functionality. Overall, this work presents a promising solution for automating aspects of laparoscopic surgery, potentially enhancing surgical efficiency by reducing the need for manual endoscope manipulation. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Artificial intelligence | es |
dc.subject | Biomedical engineering | es |
dc.subject | Ingenieria biomédica | es |
dc.subject | Image processing | es |
dc.subject | Imágenes, Tratamiento de las | es |
dc.subject | Laparoscopic surgery | es |
dc.subject | Abdomen - Cirugía | es |
dc.subject | Cirugía laparoscópica | es |
dc.subject | Abdominal surgery | es |
dc.subject | Abdomen - Cirugía | es |
dc.subject | Real-time data processing | es |
dc.subject | Tiempo real | es |
dc.subject | Neural networks (Computer science) | es |
dc.subject | Redes neuronales (Informática) | es |
dc.subject | Medical technology | es |
dc.title | Real-time tool localization for laparoscopic surgery using convolutional neural network | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The authors | es |
dc.identifier.doi | 10.3390/s24134191 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/24/13/4191 | es |
dc.identifier.publicationfirstpage | 4191 | es |
dc.identifier.publicationissue | 13 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 24 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades - (project PID2022- 138206OB-C33) | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 32 Ciencias Médicas | es |
dc.subject.unesco | 3213.01 Cirugía Abdominal | es |
dc.subject.unesco | 3314 Tecnología Médica | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional