Mostrar el registro sencillo del ítem

dc.contributor.authorBenavides Cobos, Diego
dc.contributor.authorCisnal de la Rica, Ana
dc.contributor.authorFontúrbel Mediavilla, Carlos
dc.contributor.authorFuente López, Eusebio de la 
dc.contributor.authorFraile Marinero, Juan Carlos 
dc.date.accessioned2024-06-28T10:56:37Z
dc.date.available2024-06-28T10:56:37Z
dc.date.issued2024
dc.identifier.citationSensors, 2024, Vol. 24, Nº. 13, 4191es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68303
dc.descriptionProducción Científicaes
dc.description.abstractPartially automated robotic systems, such as camera holders, represent a pivotal step towards enhancing efficiency and precision in surgical procedures. Therefore, this paper introduces an approach for real-time tool localization in laparoscopy surgery using convolutional neural networks. The proposed model, based on two Hourglass modules in series, can localize up to two surgical tools simultaneously. This study utilized three datasets: the ITAP dataset, alongside two publicly available datasets, namely Atlas Dione and EndoVis Challenge. Three variations of the Hourglass-based models were proposed, with the best model achieving high accuracy (92.86%) and frame rates (27.64 FPS), suitable for integration into robotic systems. An evaluation on an independent test set yielded slightly lower accuracy, indicating limited generalizability. The model was further analyzed using the Grad-CAM technique to gain insights into its functionality. Overall, this work presents a promising solution for automating aspects of laparoscopic surgery, potentially enhancing surgical efficiency by reducing the need for manual endoscope manipulation.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArtificial intelligencees
dc.subjectBiomedical engineeringes
dc.subjectIngenieria biomédicaes
dc.subjectImage processinges
dc.subjectImágenes, Tratamiento de lases
dc.subjectLaparoscopic surgeryes
dc.subjectAbdomen - Cirugíaes
dc.subjectCirugía laparoscópicaes
dc.subjectAbdominal surgeryes
dc.subjectAbdomen - Cirugíaes
dc.subjectReal-time data processinges
dc.subjectTiempo reales
dc.subjectNeural networks (Computer science)es
dc.subjectRedes neuronales (Informática)es
dc.subjectMedical technologyes
dc.titleReal-time tool localization for laparoscopic surgery using convolutional neural networkes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The authorses
dc.identifier.doi10.3390/s24134191es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/24/13/4191es
dc.identifier.publicationfirstpage4191es
dc.identifier.publicationissue13es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume24es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades - (project PID2022- 138206OB-C33)es
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco3213.01 Cirugía Abdominales
dc.subject.unesco3314 Tecnología Médicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem