Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68303
Título
Real-time tool localization for laparoscopic surgery using convolutional neural network
Autor
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2024, Vol. 24, Nº. 13, 4191
Resumen
Partially automated robotic systems, such as camera holders, represent a pivotal step towards enhancing efficiency and precision in surgical procedures. Therefore, this paper introduces an approach for real-time tool localization in laparoscopy surgery using convolutional neural networks. The proposed model, based on two Hourglass modules in series, can localize up to two surgical tools simultaneously. This study utilized three datasets: the ITAP dataset, alongside two publicly available datasets, namely Atlas Dione and EndoVis Challenge. Three variations of the Hourglass-based models were proposed, with the best model achieving high accuracy (92.86%) and frame rates (27.64 FPS), suitable for integration into robotic systems. An evaluation on an independent test set yielded slightly lower accuracy, indicating limited generalizability. The model was further analyzed using the Grad-CAM technique to gain insights into its functionality. Overall, this work presents a promising solution for automating aspects of laparoscopic surgery, potentially enhancing surgical efficiency by reducing the need for manual endoscope manipulation.
Materias (normalizadas)
Artificial intelligence
Biomedical engineering
Ingenieria biomédica
Image processing
Imágenes, Tratamiento de las
Laparoscopic surgery
Abdomen - Cirugía
Cirugía laparoscópica
Abdominal surgery
Abdomen - Cirugía
Real-time data processing
Tiempo real
Neural networks (Computer science)
Redes neuronales (Informática)
Medical technology
Materias Unesco
1203.04 Inteligencia Artificial
32 Ciencias Médicas
3213.01 Cirugía Abdominal
3314 Tecnología Médica
ISSN
1424-8220
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades - (project PID2022- 138206OB-C33)
Version del Editor
Propietario de los Derechos
© 2024 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional