Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/6842
Título
Correlation Between Adenosine Triphosphate Levels, Dopamine Release and Electrical Activity in the Carotid Body: Support for the Metabolic Hypothesis of Chemoreception
Año del Documento
1985
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Brain Research, 1985, vol. 348, p.64-68
Abstract
An unsolved issue for the arterial chemoreceptors is the mechanism by which hypoxia and other natural stimuli lead to an increase of
activity in the carotid sinus nerve. According to the 'metabolic hypothesis', the hypoxic activation of the carotid body (CB) is mediated
by a decrease of the ATP levels in the type I cells, which then release a neurotransmitter capable of exciting the sensory nerve endings.
Using an in vitro preparation of cat CB, we report that ATP levels in the CB do in fact decrease when the organs are exposed to moderate,
short lasting hypoxia (5 min 20% 02). Additionally, we found that decreases in ATP levels induced by 2-deoxyglucose (2 mM) or
sodium cyanide (0.1 raM) are closely correlated with dopamine release from type I cells and electrical activity in the carotid sinus
nerve elicited by these agents. The possible cause-effect relationship of these events is discussed
Materias (normalizadas)
Neurofisiología
ISSN
0006-8993
Revisión por pares
Sí
Idioma
eng
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International