• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Grado UVa
    • Ver ítem
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Grado UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/69173

    Título
    Elaboración de un modelo predictivo de supervivencia en glioblastomas mediante aprendizaje automático e imágenes de resonancia magnética
    Autor
    Ramos García, Roberto
    Director o Tutor
    Sarabia Herrero, María RosarioAutoridad UVA
    Cepeda Chafla, Santiago
    Editor
    Universidad de Valladolid. Facultad de MedicinaAutoridad UVA
    Año del Documento
    2024
    Titulación
    Grado en Medicina
    Resumen
    El Glioblastoma es el tumor primario cerebral más frecuente y con el peor pronóstico. La mediana de supervivencia es de 12 a 18 meses tras el diagnóstico a pesar del tratamiento oncológico adyuvante. El objetivo de nuestro estudio es desarrollar modelos predictivos de supervivencia pretratamiento, mediante análisis de clasificación y regresión, utilizando las características radiómicas de la resonancia magnética (RM), en combinación con algoritmos de aprendizaje automático. Hemos utilizado una muestra multi-institucional formada por un total de 1124 pacientes y sus estudios de RM preoperatoria, divididos en dos cohortes, una de entrenamiento y otra de prueba. Tras la extracción de características radiómicas de diversas subregiones tumorales y modalidades de RM del grupo de entrenamiento, realizamos una selección de variables aplicando una regresión LASSO (least absolute shrinkage and selection operator - operador de selección y reducción absoluta mínima) penalizada, y empleamos el grupo de prueba para evaluar el rendimiento de los modelos. Los resultados han mostrado una precisión del 61% y un área bajo la curva (AUC) de 0.75 en el modelo de clasificación entrenado utilizando el algoritmo XGBoost (Aumento de Gradiente Extremo). En la regresión, el modelo obtuvo un Índice C de 0.63 y un Spearman Rho de 0.45, indicando una moderada capacidad para predecir la supervivencia en días. De acuerdo con nuestros resultados, nuestros modelos de predicción de supervivencia emplean características de imagen reproducibles y sus resultados son generalizables dentro de la amplia muestra de pacientes utilizada. Futuras investigaciones deberán ser encaminadas a mejorar el rendimiento del modelo, y conseguir así elaborar una herramienta pronóstica potencialmente aplicable en la práctica clínica.
    Materias (normalizadas)
    Cerebro - Tumores
    Resonancia magnética
    Materias Unesco
    3213.08 Neurocirugía
    Palabras Clave
    Cirugia
    Glioblastoma
    Resección
    Radiómica
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/69173
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [31077]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TFG-M3349.pdf
    Tamaño:
    2.307Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10