• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Gestión Forestal Sostenible
    • IUGFS - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Gestión Forestal Sostenible
    • IUGFS - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/69475

    Título
    Assessing the efficacy of phenological spectral differences to detect invasive alien Acacia dealbata using Sentinel-2 data in southern Europe
    Autor
    Domingo Ruiz, DaríoAutoridad UVA Orcid
    Pérez Rodríguez, Fernando
    Gómez García, Esteban
    Rodríguez Puerta, FranciscoAutoridad UVA
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Remote Sensing, 2023, Vol. 15, Nº. 3, 722
    Zusammenfassung
    Invasive alien plants are transforming the landscapes, threatening the most vulnerable elements of local biodiversity across the globe. The monitoring of invasive species is paramount for minimizing the impact on biodiversity. In this study, we aim to discriminate and identify the spatial extent of Acacia dealbata Link from other species using RGB-NIR Sentinel-2 data based on phenological spectral peak differences. Time series were processed using the Earth Engine platform and random forest importance was used to select the most suitable Sentinel-2 derived metrics. Thereafter, a random forest machine learning algorithm was trained to discriminate between A. dealbata and native species. A flowering period was detected in March and metrics based on the spectral difference between blooming and the pre flowering (January) or post flowering (May) months were highly suitable for A. dealbata discrimination. The best-fitted classification model shows an overall accuracy of 94%, including six Sentinel-2 derived metrics. We find that 55% of A. dealbata presences were widely widespread in patches replacing Pinus pinaster Ait. stands. This invasive alien species also creates continuous monospecific stands representing 33% of the presences. This approach demonstrates its value for detecting and mapping A. dealbata based on RGB-NIR bands and phenological peak differences between blooming and pre or post flowering months providing suitable information for an early detection of invasive species to improve sustainable forest management.
    Materias (normalizadas)
    Invasive alien species
    Invasive plants - Biological control
    Animales y plantas perjudiciales, Lucha biológica contra los
    Remote sensing
    Artificial satellites
    Satelites artificiales
    Machine learning
    Aprendizaje automático
    Phenology
    Fenología
    Bosques - Gestión
    Forests and forestry - Europe
    Bosques y Silvicultura - Europa
    Sustainable development
    Desarrollo sostenible
    Plant science
    Materias Unesco
    2506.16 Teledetección (Geología)
    3106 Ciencia Forestal
    3106.08 Silvicultura
    ISSN
    2072-4292
    Revisión por pares
    SI
    DOI
    10.3390/rs15030722
    Patrocinador
    Unión Europea-Next Generation EU, Ayudas Margarita Salas - (grant MS-240621)
    Version del Editor
    https://www.mdpi.com/2072-4292/15/3/722
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/69475
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • IUGFS - Artículos de revista [147]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Assessing-the-Efficacy-of-Phenological-Spectral-Differences.pdf
    Tamaño:
    6.828Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10