Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/69703
Título
Structure of non-autonomous attractors for a class of diffusively coupled ODE
Autor
Año del Documento
2023
Editorial
American Institute of mathematics
Documento Fuente
Discrete and Continuous Dynamical Systems B, Vol 28, Num 1, 426-448
Abstract
In this work we will study the structure of the skew-product attractor for a planar diffusively coupled ordinary differential equation, given by $\dot{x}= k(y-x)+x-\beta(t)x^3$ and $\dot{y}= k(x-y)+y-\beta(t)y^3$, $t\geq 0$. We identify the non-autonomous structures that completely describes the dynamics of this model giving a Morse decomposition for the skew-product attractor. The complexity of the isolated invariant sets in the global attractor of the associated skew-product semigroup is associated to the complexity of the attractor of the associated driving semigroup. In particular, if $\beta$ is asymptotically almost periodic, the isolated invariant sets will be almost periodic hyperbolic global solutions of an associated globally defined problem.
Revisión por pares
SI
Patrocinador
Feder Ministerio de Economía y Competitividad MTM2015-66330-P , RTI2018-096523-B-I00 y Universidad de Valladolid PIP-TCESC-2020
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Collections
Files in this item