Mostrar el registro sencillo del ítem

dc.contributor.authorDueñas Pamplona, Jesús 
dc.contributor.authorNúñez Jiménez, María del Carmen 
dc.contributor.authorObaya, Rafael 
dc.date.accessioned2024-09-17T07:00:29Z
dc.date.available2024-09-17T07:00:29Z
dc.date.issued2024
dc.identifier.citationJournal of Nonlinear Science, 2024, vol. 34, 105es
dc.identifier.issn0938-8974
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/69793
dc.description.abstractThe occurrence of tracking or tipping situations for a transition equation $x'=f(t,x,\G(t,x))$ with asymptotic limits $x'=f(t,x,\G_\pm(t,x))$ is analyzed. The approaching condition is just $\lim_{t\to\pm\infty}(\G(t,x)-\G_\pm(t,x))=0$ uniformly on compact real sets, and so there is no restriction to the dependence on time of the asymptotic equations. The hypotheses assume concavity in $x$ either of the maps $x\mapsto f(t,x,\G_\pm(t,x))$ or of their derivatives with respect to the state variable (d-concavity), but not of $x\mapsto f(t,x,\G(t,x))$ nor of its derivative. The analysis provides a powerful tool to analyze the occurrence of critical transitions for one-parametric families $x'=f(t,x,\G^c(t,x))$. The new approach significatively widens the field of application of the results, since the evolution law of the transition equation can be essentially different from those of the limit equations. Among these applications, some scalar population dynamics models subject to non trivial predation and migration patterns are analyzed, both theoretically and numerically. Some key points in the proofs are: to understand the transition equation as part of an orbit in its hull which approaches the \upalfa-limit and \upomeg-limit sets; to observe that these sets concentrate all the ergodic measures; and to prove that in order to describe the dynamical possibilities of the equation it is sufficient that the concavity or d-concavity conditions hold for a complete measure subset of the equations of the hull.en
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classificationNonautonomous dynamical systems
dc.subject.classificationCritical transitions
dc.subject.classificationNonautonomous bifurcation
dc.subject.classificationConcave equations
dc.subject.classificationd-concave equations
dc.subject.classificationpopulation dynamics
dc.titleCritical transitions for asymptotically concave or d-concave nonautonomous differential equations with applications in Ecologyes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© The Author(s) 2024
dc.identifier.doihttps://doi.org/10.1007/s00332-024-10088-6es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00332-024-10088-6
dc.identifier.publicationtitleJournal of Nonlinear Scienceen
dc.identifier.publicationvolume34
dc.peerreviewedSIes
dc.description.projectAll the authors were supported by Ministerio de Ciencia, Innovación y Universidades (Spain) under project PID2021-125446NB-I00 and by Universidad de Valladolid under project PIP-TCESC-2020. J. Dueñas was also supported by Ministerio de Universidades (Spain) under programme FPU20/01627.es
dc.description.projectOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature
dc.identifier.essn1432-1467
dc.rightsAtribución 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem