• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/69793

    Título
    Critical transitions for asymptotically concave or d-concave nonautonomous differential equations with applications in Ecology
    Autor
    Dueñas Pamplona, JesúsAutoridad UVA Orcid
    Núñez Jiménez, María del CarmenAutoridad UVA Orcid
    Obaya, RafaelAutoridad UVA
    Año del Documento
    2024
    Editorial
    Springer
    Documento Fuente
    Journal of Nonlinear Science, 2024, vol. 34, 105
    Zusammenfassung
    The occurrence of tracking or tipping situations for a transition equation $x'=f(t,x,\G(t,x))$ with asymptotic limits $x'=f(t,x,\G_\pm(t,x))$ is analyzed. The approaching condition is just $\lim_{t\to\pm\infty}(\G(t,x)-\G_\pm(t,x))=0$ uniformly on compact real sets, and so there is no restriction to the dependence on time of the asymptotic equations. The hypotheses assume concavity in $x$ either of the maps $x\mapsto f(t,x,\G_\pm(t,x))$ or of their derivatives with respect to the state variable (d-concavity), but not of $x\mapsto f(t,x,\G(t,x))$ nor of its derivative. The analysis provides a powerful tool to analyze the occurrence of critical transitions for one-parametric families $x'=f(t,x,\G^c(t,x))$. The new approach significatively widens the field of application of the results, since the evolution law of the transition equation can be essentially different from those of the limit equations. Among these applications, some scalar population dynamics models subject to non trivial predation and migration patterns are analyzed, both theoretically and numerically. Some key points in the proofs are: to understand the transition equation as part of an orbit in its hull which approaches the \upalfa-limit and \upomeg-limit sets; to observe that these sets concentrate all the ergodic measures; and to prove that in order to describe the dynamical possibilities of the equation it is sufficient that the concavity or d-concavity conditions hold for a complete measure subset of the equations of the hull.
    Palabras Clave
    Nonautonomous dynamical systems
    Critical transitions
    Nonautonomous bifurcation
    Concave equations
    d-concave equations
    population dynamics
    ISSN
    0938-8974
    Revisión por pares
    SI
    DOI
    10.1007/s00332-024-10088-6
    Patrocinador
    All the authors were supported by Ministerio de Ciencia, Innovación y Universidades (Spain) under project PID2021-125446NB-I00 and by Universidad de Valladolid under project PIP-TCESC-2020. J. Dueñas was also supported by Ministerio de Universidades (Spain) under programme FPU20/01627.
    Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature
    Version del Editor
    https://link.springer.com/article/10.1007/s00332-024-10088-6
    Propietario de los Derechos
    © The Author(s) 2024
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/69793
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [147]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    critical_transitions_asymptotically_jns34.pdf
    Tamaño:
    2.062Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10