Mostrar el registro sencillo del ítem

dc.contributor.authorFernández-Fabeiro, Jorge
dc.contributor.authorGonzalez-Escribano, Arturo
dc.contributor.authorLlanos, Diego R.
dc.date.accessioned2024-09-26T08:02:57Z
dc.date.available2024-09-26T08:02:57Z
dc.date.issued2021
dc.identifier.citationJournal of Parallel and Distributed Computing, vol. 151, pages 86-93, May 2021, ISSN 0743-7315es
dc.identifier.issn0743-7315es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70201
dc.descriptionProducción Científicaes
dc.description.abstractHyperspectral image registration is a relevant task for real-time applications such as environmental disaster management or search and rescue scenarios. The HYFMGPU algorithm was proposed as a single-GPU high-performance solution, but the need for a distributed version has arisen due to the continuous evolution of sensors that generate images with finer spatial and spectral resolutions. In a previous work, we simplified the programming of the multi-device parts of an initial MPI+CUDA multi-GPU implementation of HYFMGPU by means of Hitmap, a library to ease the programming of parallel applications based on distributed arrays. The performance of that Hitmap version was assessed in a homogeneous GPU cluster. In this paper, we extend this implementation by means of new functionalities added to the latest version of Hitmap in order to support arbitrary load distributions for multi-node heterogeneous GPU clusters. Three different load balancing layouts are tested, which prove that selecting a proper layout affects the performance of the code and how this performance is correlated with the use of the GPUs available in the cluster.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectInformáticaes
dc.subject.classificationHyperspectral imaginges
dc.subject.classificationImage registrationes
dc.subject.classificationHeterogeneous computinges
dc.subject.classificationDistributed arrayses
dc.subject.classificationLoad balancinges
dc.titleDistributed programming of a hyperspectral image registration algorithm for heterogeneous GPU clusterses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.jpdc.2021.02.014es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0743731521000356es
dc.identifier.publicationfirstpage86es
dc.identifier.publicationlastpage93es
dc.identifier.publicationtitleJournal of Parallel and Distributed Computinges
dc.identifier.publicationvolume151es
dc.peerreviewedSIes
dc.description.projectThis work has been funded by the Consejería de Educación of Junta de Castilla y León and the European Regional Development Fund (ERDF) program (projects PROPHET, VA082P17, and PROPHET-2, VA226P20); by the Ministerio de Economía, Industria y Competitividad of Spain (project PCAS, TIN2017-88614-R); and by the Fulbright Commission, (grant Salvador de Madariaga/Fulbright Scholar PRX17/00674).es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203 Ciencia de Los Ordenadoreses
dc.subject.unesco3304 Tecnología de Los Ordenadoreses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem