• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70201

    Título
    Distributed programming of a hyperspectral image registration algorithm for heterogeneous GPU clusters
    Autor
    Fernández Fabeiro, JorgeAutoridad UVA Orcid
    González Escribano, ArturoAutoridad UVA Orcid
    Llanos Ferraris, Diego RafaelAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Parallel and Distributed Computing, vol. 151, pages 86-93, May 2021, ISSN 0743-7315
    Resumo
    Hyperspectral image registration is a relevant task for real-time applications such as environmental disaster management or search and rescue scenarios. The HYFMGPU algorithm was proposed as a single-GPU high-performance solution, but the need for a distributed version has arisen due to the continuous evolution of sensors that generate images with finer spatial and spectral resolutions. In a previous work, we simplified the programming of the multi-device parts of an initial MPI+CUDA multi-GPU implementation of HYFMGPU by means of Hitmap, a library to ease the programming of parallel applications based on distributed arrays. The performance of that Hitmap version was assessed in a homogeneous GPU cluster. In this paper, we extend this implementation by means of new functionalities added to the latest version of Hitmap in order to support arbitrary load distributions for multi-node heterogeneous GPU clusters. Three different load balancing layouts are tested, which prove that selecting a proper layout affects the performance of the code and how this performance is correlated with the use of the GPUs available in the cluster.
    Materias (normalizadas)
    Informática
    Materias Unesco
    1203 Ciencia de Los Ordenadores
    3304 Tecnología de Los Ordenadores
    Palabras Clave
    Hyperspectral imaging
    Image registration
    Heterogeneous computing
    Distributed arrays
    Load balancing
    ISSN
    0743-7315
    Revisión por pares
    SI
    DOI
    10.1016/j.jpdc.2021.02.014
    Patrocinador
    This work has been funded by the Consejería de Educación of Junta de Castilla y León and the European Regional Development Fund (ERDF) program (projects PROPHET, VA082P17, and PROPHET-2, VA226P20); by the Ministerio de Economía, Industria y Competitividad of Spain (project PCAS, TIN2017-88614-R); and by the Fulbright Commission, (grant Salvador de Madariaga/Fulbright Scholar PRX17/00674).
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0743731521000356
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/70201
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [108]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    1-s2.0-S0743731521000356-main.pdf
    Tamaño:
    819.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10