Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Rodrigo, Raquel
dc.contributor.authorÁgueda Hernández, Beatriz
dc.contributor.authorÁgreda, Teresa
dc.contributor.authorAltelarrea, José Miguel
dc.contributor.authorFernández Toirán, Luz Marina 
dc.contributor.authorRodríguez Puerta, Francisco 
dc.date.accessioned2024-10-04T08:02:15Z
dc.date.available2024-10-04T08:02:15Z
dc.date.issued2024
dc.identifier.citationSustainability, 2024, Vol. 16, Nº. 13, 5656es
dc.identifier.issn2071-1050es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70415
dc.descriptionProducción Científicaes
dc.description.abstractThe integral role of wild fungi in ecosystems, including provisioning, regulating, cultural, and supporting services, is well recognized. However, quantifying and predicting wild mushroom yields is challenging due to spatial and temporal variability. In Mediterranean forests, climate-change-induced droughts further impact mushroom production. Fungal fruiting is influenced by factors such as climate, soil, topography, and forest structure. This study aims to quantify and predict the mycological potential of Lactarius deliciosus in sustainably managed Mediterranean pine forests using machine learning models. We utilize a long-term dataset of Lactarius deliciosus yields from 17 Pinus pinaster plots in Soria, Spain, integrating forest-derived structural data, NASA Landsat mission vegetation indices, and climatic data. The resulting multisource database facilitates the creation of a two-stage ‘mycological exploitability’ index, crucial for incorporating anticipated mycological production into sustainable forest management, in line with what is usually done for other uses such as timber or game. Various Machine Learning (ML) techniques, such as classification trees, random forest, linear and radial support vector machine, and neural networks, were employed to construct models for classification and prediction. The sample was always divided into training and validation sets (70-30%), while the differences were found in terms of Overall Accuracy (OA). Neural networks, incorporating critical variables like climatic data (precipitation in January and humidity in November), remote sensing indices (Enhanced Vegetation Index, Green Normalization Difference Vegetation Index), and structural forest variables (mean height, site index and basal area), produced the most accurate and unbiased models (OAtraining = 0.8398; OAvalidation = 0.7190). This research emphasizes the importance of considering a diverse array of ecosystem variables for quantifying wild mushroom yields and underscores the pivotal role of Artificial Intelligence (AI) tools and remotely sensed observations in modeling non-wood forest products. Integrating such models into sustainable forest management plans is crucial for recognizing the ecosystem services provided by them.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMushroomses
dc.subjectHongoses
dc.subjectEdible mushroomses
dc.subjectHongos comestibleses
dc.subjectNon-wood forest productses
dc.subjectForest productses
dc.subjectProductos forestaleses
dc.subjectRemote sensinges
dc.subjectTeledetecciónes
dc.subjectNeural networks (Computer science)es
dc.subjectRedes neuronales (Informática)es
dc.subjectForests and forestryes
dc.subjectBosques y silviculturaes
dc.subjectForest managementes
dc.subjectBosques - Gestiónes
dc.subjectSustainable developmentes
dc.subjectDesarrollo sosteniblees
dc.titleAssessment of mycological possibility using machine learning models for effective inclusion in sustainable forest managementes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The authorses
dc.identifier.doi10.3390/su16135656es
dc.relation.publisherversionhttps://www.mdpi.com/2071-1050/16/13/5656es
dc.identifier.publicationfirstpage5656es
dc.identifier.publicationissue13es
dc.identifier.publicationtitleSustainabilityes
dc.identifier.publicationvolume16es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades - (grant DI-17-9626)es
dc.identifier.essn2071-1050es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2417.06 Micología (Setas)es
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco1203.17 Informáticaes
dc.subject.unesco3106 Ciencia Forestales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem