Mostrar el registro sencillo del ítem
dc.contributor.author | Torres de la Sierra, Yuri | |
dc.contributor.author | González Escribano, Arturo | |
dc.contributor.author | Llanos Ferraris, Diego Rafael | |
dc.date.accessioned | 2024-10-08T07:53:55Z | |
dc.date.available | 2024-10-08T07:53:55Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Parallel and Distributed Processing Techniques and Applications (PDPTA 2013), Las Vegas, Nevada | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/70522 | |
dc.description | Producción Científica | es |
dc.description.abstract | Tools that aim to automatically map parallel computations to heterogeneous and hierarchical systems try to divide the whole computation in parts with computational loads adjusted to the capabilities of the target devices. Some parts are executed in node cores, while others are executed in accelerator devices. Each part requires one or more data-structure pieces that should be allocated in the device memory during the computation. In this paper we present a model that allows such automatic mapping tools to transparently assign computations to heterogeneous devices with different memory size restrictions. The model requires the programmer to specify the access patterns of the computation threads in a simple abstract form. This information is used at run-time to determine the second-level partition of the computation assigned to a device, ensuring that the data pieces required by each sub-part fit in the target device memory, and that the number of kernels launched is minimal. We present experimental results with a prototype implementation of the model that works for regular polyhedral expressions. We show how it works for different example applications and access patterns, transparently executing big computations in devices with different memory size restrictions. | es |
dc.format.extent | 6 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject | Informática | es |
dc.subject.classification | Heterogeneous devices | es |
dc.subject.classification | Polyhedral model | es |
dc.subject.classification | Memory-size restrictions | es |
dc.subject.classification | Automatic mapping tools | es |
dc.title | Automatic Run-time Mapping of Polyhedral Computations to Heterogeneous Devices with Memory-size Restrictions | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.identifier.doi | 10.5281/zenodo.13902211 | es |
dc.relation.publisherversion | https://www.researchgate.net/publication/380576840_Automatic_run-time_mapping_of_polyhedral_computations_to_heterogeneous_devices_with_memory-size_restrictions | es |
dc.title.event | Parallel and Distributed Processing Techniques and Applications (PDPTA 2013) | es |
dc.description.project | This research is partly supportedby the Castilla-Leon Regional Government (VA172A12-2); Ministerio de Industria, Spain (CENIT OCEANLIDER); MICINN (Spain) and the European Union FEDER (Mogecopp project TIN2011-25639, CAPAP-H3 network TIN2010-12011-E, CAPAP-H4 network TIN2011-15734-E); and the HPC-EUROPA2 project (project number: 228398) with the supportof the European Commission - Capacities Area - ResearchInfrastructures Initiative. | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | es |
dc.subject.unesco | 3304 Tecnología de Los Ordenadores | es |