dc.contributor.author | Planchuelo Gómez, Álvaro | |
dc.contributor.author | Descoteaux, Maxime | |
dc.contributor.author | Larochelle, Hugo | |
dc.contributor.author | Hutter, Jana | |
dc.contributor.author | Jones, Derek K. | |
dc.contributor.author | Tax, Chantal M.W. | |
dc.date.accessioned | 2024-10-08T10:07:08Z | |
dc.date.available | 2024-10-08T10:07:08Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Medical Image Analysis, 2024, vol. 94, 103134. | es |
dc.identifier.issn | 1361-8415 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/70531 | |
dc.description | Producción Científica | es |
dc.description.abstract | Diffusion-relaxation MRI aims to extract quantitative measures that characterise microstructural tissue properties such as orientation, size, and shape, but long acquisition times are typically required. This work proposes a physics-informed learning framework to extract an optimal subset of diffusion-relaxation MRI measurements for enabling shorter acquisition times, predict non-measured signals, and estimate quantitative parameters.
In vivo and synthetic brain 5D-Diffusion-𝑇�1-𝑇�2* -weighted MRI data obtained from five healthy subjects were used for training and validation, and from a sixth participant for testing. One fully data-driven and two physics-informed machine learning methods were implemented and compared to two manual selection procedures and Cramér–Rao lower bound optimisation.
The physics-informed approaches could identify measurement-subsets that yielded more consistently
accurate parameter estimates in simulations than other approaches, with similar signal prediction error. Five-fold shorter protocols yielded error distributions of estimated quantitative parameters with very small effect sizes compared to estimates from the full protocol. Selected subsets commonly included a denser sampling of the shortest and longest inversion time, lowest echo time, and high b-value.
The proposed framework combining machine learning and MRI physics offers a promising approach
to develop shorter imaging protocols without compromising the quality of parameter estimates and signal
predictions. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.classification | Quantitative MRI, Machine Learning, Brain, Diffusion-relaxation | es |
dc.title | Optimisation of quantitative brain diffusion-relaxation MRI acquisition protocols with physics-informed machine learning | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1016/j.media.2024.103134 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1361841524000598 | |
dc.identifier.publicationfirstpage | 103134 | es |
dc.identifier.publicationtitle | Medical Image Analysis | es |
dc.identifier.publicationvolume | 94 | es |
dc.peerreviewed | SI | es |
dc.description.project | Este trabajo forma parte del proyecto de investigación: grant TED2021-130758B-I00, funded by MCIN/AEI/10.13039/501100011033, Spain and the European Union ‘‘NextGenerationEU/PRTR" | es |
dc.description.project | Grant EP/M029778/1, EPSRC, United Kingdom | es |
dc.description.project | Grants 096646/Z/11/Z, 104943/Z/14/Z, 215944/Z/19/Z Wellcome Trust, United Kingdom | es |
dc.description.project | Veni grant 17331, The Netherlands | es |
dc.rights | Atribución 4.0 Internacional | |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |