Show simple item record

dc.contributor.authorPlanchuelo Gómez, Álvaro 
dc.contributor.authorDescoteaux, Maxime
dc.contributor.authorLarochelle, Hugo
dc.contributor.authorHutter, Jana
dc.contributor.authorJones, Derek K.
dc.contributor.authorTax, Chantal M.W.
dc.date.accessioned2024-10-08T10:07:08Z
dc.date.available2024-10-08T10:07:08Z
dc.date.issued2024
dc.identifier.citationMedical Image Analysis, 2024, vol. 94, 103134.es
dc.identifier.issn1361-8415es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70531
dc.descriptionProducción Científicaes
dc.description.abstractDiffusion-relaxation MRI aims to extract quantitative measures that characterise microstructural tissue properties such as orientation, size, and shape, but long acquisition times are typically required. This work proposes a physics-informed learning framework to extract an optimal subset of diffusion-relaxation MRI measurements for enabling shorter acquisition times, predict non-measured signals, and estimate quantitative parameters. In vivo and synthetic brain 5D-Diffusion-𝑇�1-𝑇�2* -weighted MRI data obtained from five healthy subjects were used for training and validation, and from a sixth participant for testing. One fully data-driven and two physics-informed machine learning methods were implemented and compared to two manual selection procedures and Cramér–Rao lower bound optimisation. The physics-informed approaches could identify measurement-subsets that yielded more consistently accurate parameter estimates in simulations than other approaches, with similar signal prediction error. Five-fold shorter protocols yielded error distributions of estimated quantitative parameters with very small effect sizes compared to estimates from the full protocol. Selected subsets commonly included a denser sampling of the shortest and longest inversion time, lowest echo time, and high b-value. The proposed framework combining machine learning and MRI physics offers a promising approach to develop shorter imaging protocols without compromising the quality of parameter estimates and signal predictions.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classificationQuantitative MRI, Machine Learning, Brain, Diffusion-relaxationes
dc.titleOptimisation of quantitative brain diffusion-relaxation MRI acquisition protocols with physics-informed machine learninges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.media.2024.103134es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1361841524000598
dc.identifier.publicationfirstpage103134es
dc.identifier.publicationtitleMedical Image Analysises
dc.identifier.publicationvolume94es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación: grant TED2021-130758B-I00, funded by MCIN/AEI/10.13039/501100011033, Spain and the European Union ‘‘NextGenerationEU/PRTR"es
dc.description.projectGrant EP/M029778/1, EPSRC, United Kingdomes
dc.description.projectGrants 096646/Z/11/Z, 104943/Z/14/Z, 215944/Z/19/Z Wellcome Trust, United Kingdomes
dc.description.projectVeni grant 17331, The Netherlandses
dc.rightsAtribución 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record