Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70531
Título
Optimisation of quantitative brain diffusion-relaxation MRI acquisition protocols with physics-informed machine learning
Autor
Año del Documento
2024
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Medical Image Analysis, 2024, vol. 94, p. 103134.
Resumen
Diffusion-relaxation MRI aims to extract quantitative measures that characterise microstructural tissue properties such as orientation, size, and shape, but long acquisition times are typically required. This work proposes a physics-informed learning framework to extract an optimal subset of diffusion-relaxation MRI measurements for enabling shorter acquisition times, predict non-measured signals, and estimate quantitative parameters.
In vivo and synthetic brain 5D-Diffusion-𝑇�1-𝑇�2* -weighted MRI data obtained from five healthy subjects were used for training and validation, and from a sixth participant for testing. One fully data-driven and two physics-informed machine learning methods were implemented and compared to two manual selection procedures and Cramér–Rao lower bound optimisation.
The physics-informed approaches could identify measurement-subsets that yielded more consistently
accurate parameter estimates in simulations than other approaches, with similar signal prediction error. Five-fold shorter protocols yielded error distributions of estimated quantitative parameters with very small effect sizes compared to estimates from the full protocol. Selected subsets commonly included a denser sampling of the shortest and longest inversion time, lowest echo time, and high b-value.
The proposed framework combining machine learning and MRI physics offers a promising approach
to develop shorter imaging protocols without compromising the quality of parameter estimates and signal
predictions.
Palabras Clave
Quantitative MRI, Machine Learning, Brain, Diffusion-relaxation
ISSN
1361-8415
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación: grant TED2021-130758B-I00, funded by MCIN/AEI/10.13039/501100011033, Spain and the European Union ‘‘NextGenerationEU/PRTR"
Grant EP/M029778/1, EPSRC, United Kingdom
Grants 096646/Z/11/Z, 104943/Z/14/Z, 215944/Z/19/Z Wellcome Trust, United Kingdom
Veni grant 17331, The Netherlands
Grant EP/M029778/1, EPSRC, United Kingdom
Grants 096646/Z/11/Z, 104943/Z/14/Z, 215944/Z/19/Z Wellcome Trust, United Kingdom
Veni grant 17331, The Netherlands
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem