• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70531

    Título
    Optimisation of quantitative brain diffusion-relaxation MRI acquisition protocols with physics-informed machine learning
    Autor
    Planchuelo Gómez, ÁlvaroAutoridad UVA Orcid
    Descoteaux, Maxime
    Larochelle, Hugo
    Hutter, Jana
    Jones, Derek K.
    Tax, Chantal M.W.
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Medical Image Analysis, 2024, vol. 94, 103134.
    Resumen
    Diffusion-relaxation MRI aims to extract quantitative measures that characterise microstructural tissue properties such as orientation, size, and shape, but long acquisition times are typically required. This work proposes a physics-informed learning framework to extract an optimal subset of diffusion-relaxation MRI measurements for enabling shorter acquisition times, predict non-measured signals, and estimate quantitative parameters. In vivo and synthetic brain 5D-Diffusion-𝑇�1-𝑇�2* -weighted MRI data obtained from five healthy subjects were used for training and validation, and from a sixth participant for testing. One fully data-driven and two physics-informed machine learning methods were implemented and compared to two manual selection procedures and Cramér–Rao lower bound optimisation. The physics-informed approaches could identify measurement-subsets that yielded more consistently accurate parameter estimates in simulations than other approaches, with similar signal prediction error. Five-fold shorter protocols yielded error distributions of estimated quantitative parameters with very small effect sizes compared to estimates from the full protocol. Selected subsets commonly included a denser sampling of the shortest and longest inversion time, lowest echo time, and high b-value. The proposed framework combining machine learning and MRI physics offers a promising approach to develop shorter imaging protocols without compromising the quality of parameter estimates and signal predictions.
    Palabras Clave
    Quantitative MRI, Machine Learning, Brain, Diffusion-relaxation
    ISSN
    1361-8415
    Revisión por pares
    SI
    DOI
    10.1016/j.media.2024.103134
    Patrocinador
    Este trabajo forma parte del proyecto de investigación: grant TED2021-130758B-I00, funded by MCIN/AEI/10.13039/501100011033, Spain and the European Union ‘‘NextGenerationEU/PRTR"
    Grant EP/M029778/1, EPSRC, United Kingdom
    Grants 096646/Z/11/Z, 104943/Z/14/Z, 215944/Z/19/Z Wellcome Trust, United Kingdom
    Veni grant 17331, The Netherlands
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1361841524000598
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/70531
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    planchuelogomez2024_MEDIA_optimisation_dMRI.pdf
    Tamaño:
    5.805Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10