dc.contributor.author | Gallardo Saavedra, Sara | |
dc.contributor.author | Hernández Callejo, Luis | |
dc.contributor.author | Alonso-García, María del Carmen | |
dc.contributor.author | Muñoz-Cruzado-Alba, Jesús | |
dc.contributor.author | Ballestín-Fuertes, Javier | |
dc.date.accessioned | 2024-10-08T11:09:54Z | |
dc.date.available | 2024-10-08T11:09:54Z | |
dc.date.issued | 2020-08 | |
dc.identifier.citation | Sensors 2020, 20(16), 4395 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/70539 | |
dc.description | Producción Científica | es |
dc.description.abstract | Newly installed renewable power capacity has been increasing incredibly in recent years.
For example, in 2018, 181 GW were installed worldwide. In this scenario, in which photovoltaic (PV)
energy plays a leading role, it is essential for main players involved in PV plants to be able to identify
the failure modes in PV modules in order to reduce investment risk, to focus their maintenance efforts
on preventing those failures and to improve longevity and performance of PV plants. Among the
different systems for defects detection, conventional infrared thermography (IRT) is the fastest and
least expensive technique. It can be applied in illumination and in dark conditions, both indoor and
outdoor. These two methods can provide complementary results for the same kind of defects, which
is analyzed and characterized in this research. Novel investigation in PV systems propose the use of a
power inverter with bidirectional power flow capability for PV plants maintenance, which extremely
facilitates the electroluminescence (EL) inspections, as well as the outdoor IRT in the fourth quadrant. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Infrared Thermography for the Detection and Characterization of Photovoltaic Defects: Comparison between Illumination and Dark Conditions | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.3390/s20164395 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/20/16/4395 | es |
dc.identifier.publicationfirstpage | 4395 | es |
dc.identifier.publicationissue | 16 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 20 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Industria, Economía y Competitividad grant number RTC-2017-6712-3 with name Desarrollo de herramientas Optimizadas de operaCión y manTenimientO pRedictivo de Plantas fotovoltaicas—DOCTOR-PV | es |
dc.description.project | University of Valladolid 2018 pre-doctoral research contract from the budget application 180113-541A.2.01e691 | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |