Mostrar el registro sencillo del ítem

dc.contributor.authorAja Fernández, Santiago 
dc.contributor.authorMartín Martín, Carmen
dc.contributor.authorPlanchuelo Gómez, Álvaro 
dc.contributor.authorFaiyaz, Abrar
dc.contributor.authorUddin, Md Nasir
dc.contributor.authorSchifitto, Giovanni
dc.contributor.authorTiwari, Abhishek
dc.contributor.authorShigwan, Saurabh J.
dc.contributor.authorKumar Singh, Rajeev
dc.contributor.authorZheng, Tianshu
dc.contributor.authorCao, Zuozhen
dc.contributor.authorWu, Dan
dc.contributor.authorBlumberg, Stefano B.
dc.contributor.authorSen, Snigdha
dc.contributor.authorGoodwin-Allcock, Tobias
dc.contributor.authorSlator, Paddy J.
dc.contributor.authorYigit Avci, Mehmet
dc.contributor.authorLi, Zihan
dc.contributor.authorBilgic, Berkin
dc.contributor.authorTian, Qiyuan
dc.contributor.authorWang, Xinyi
dc.contributor.authorTang, Zihao
dc.contributor.authorCabezas, Mariano
dc.contributor.authorRauland, Amelie
dc.contributor.authorMerhof, Dorit
dc.contributor.authorManzano María, Renata
dc.contributor.authorCampos, Vinícius Paraníba
dc.contributor.authorSantini, Tales
dc.contributor.authorda Costa Vieira, Marcelo Andrade
dc.contributor.authorHashemizadehKolowri, SeyyedKazem
dc.contributor.authorDiBella, Edward
dc.contributor.authorPeng, Chenxu
dc.contributor.authorShen, Zhimin
dc.contributor.authorChen, Zan
dc.contributor.authorUllah, Irfan
dc.contributor.authorMani, Merry
dc.contributor.authorAbdolmotallby, Hesam
dc.contributor.authorEckstrom, Samuel
dc.contributor.authorBaete, Steven H.
dc.contributor.authorFilipiak, Patryk
dc.contributor.authorDong, Tanxin
dc.contributor.authorFan, Qiuyun
dc.contributor.authorLuis García, Rodrigo de 
dc.contributor.authorTristán Vega, Antonio 
dc.contributor.authorPieciak, Tomasz
dc.date.accessioned2024-10-09T08:06:37Z
dc.date.available2024-10-09T08:06:37Z
dc.date.issued2023
dc.identifier.citationNeuroImage: Clinical, 2023, vol. 39, p. 103483es
dc.identifier.issn2213-1582es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70628
dc.description.abstractThe objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationDeep learninges
dc.subject.classificationMachine learninges
dc.subject.classificationArtificial intelligencees
dc.subject.classificationDiffusion MRIes
dc.subject.classificationAngular resolutiones
dc.subject.classificationDiffusion tensores
dc.titleValidation of deep learning techniques for quality augmentation in diffusion MRI for clinical studieses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.nicl.2023.103483es
dc.identifier.publicationfirstpage103483es
dc.identifier.publicationtitleNeuroImage: Clinicales
dc.identifier.publicationvolume39es
dc.peerreviewedSIes
dc.description.projectGrant PID2021-124407NB-I00 - Ministerio de Ciencia e Innovación (Spain)es
dc.description.projectGrant TED2021-130758B-I00 - Ministerio de Ciencia e Innovación (Spain) and NextGenerationEU/PRTRes
dc.description.projectGrant PPN/BEK/2019/1/00421 - Polish National Agency for Academic Exchangees
dc.description.projectGrants M020533, R006032, R014019, EP/S021930/1, EP/V034537/1 - EPSRCes
dc.description.projectGrant MRFFAI000085 - Australia Medical Research Future Fundes
dc.description.projectGrants ME 3737/19-1 and 269953372/GRK2150 - German Research Foundationes
dc.description.projectGrants R01- EB028774 , R01-NS082436, R01-EB031169, R01-AG054328 and R01-MH118020 - National Council for Scientific and Technological Development (CNPq) and National Institute of Healthes
dc.description.projectGrant 2021ZD0200202 - Ministry of Science and Technology of the People’s Republic of Chinaes
dc.description.projectGrants 81971606, 82122032 - National Natural Science Foundation of Chinaes
dc.description.projectGrants 202006140, 2022C03057 - Science and Technology Department of Zhejiang Provincees
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem