Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/71170
Título
Newton non-degenerate foliations and blowing-ups
Autor
Año del Documento
2021
Editorial
Elsevier
Documento Fuente
B. Molina-Samper, Newton non-degenerate foliations and blowing-ups, Bull. Sci. Math. 162 (2020) 102872, https://doi .org /10 .1016 /j .bulsci .2020 .102872.
Abstract
A codimension one singular holomorphic foliation is Newton non-degenerate if it satisfies some non-degeneracy conditions, in terms of its Newton polyhedra system. These conditions are similar to the ones of Kouchnirenko and Oka for the case of functions. We introduce the concept of logarithmic reduction of singularities and we prove that a foliation is Newton non-degenerate if and only if it admits a logarithmic reduction of singularities of a combinatorial nature.
Revisión por pares
SI
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item