• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/71260

    Título
    A Machine Hearing System for Robust Cough Detection Based on a High-Level Representation of Band-Specific Audio Features
    Autor
    Monge Álvarez, Jesús
    Hoyos-Barceló, Carlos
    San José Revuelta, Luis MiguelAutoridad UVA Orcid
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Año del Documento
    2019-08
    Editorial
    IEEE
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Transactions on Biomedical Engineering, August 2019, Vol. 66, Issue 8, pp. 2319-2330.
    Resumen
    Cough is a protective reflex conveying information on the state of the respiratory system. Cough assessment has been limited so far to subjective measurement tools or uncomfortable (i.e., non-wearable) cough monitors. This limits the potential of real-time cough monitoring to improve respiratory care. Objective: This paper presents a machine hearing system for audio-based robust cough segmentation that can be easily deployed in mobile scenarios. Methods: Cough detection is performed in two steps. First, a short-term spectral feature set is separately computed in five predefined frequency bands: [0, 0.5), [0.5, 1), [1, 1.5), [1.5, 2), and [2, 5.5125] kHz. Feature selection and combination are then applied to make the short-term feature set robust enough in different noisy scenarios. Second, high-level data representation is achieved by computing the mean and standard deviation of short-term descriptors in 300 ms long-term frames. Finally, cough detection is carried out using a support vector machine trained with data from different noisy scenarios. The system is evaluated using a patient signal database which emulates three real-life scenarios in terms of noise content. Results: The system achieves 92.71% sensitivity, 88.58% specificity, and 90.69% Area Under Receiver Operating Charcteristic (ROC) curve (AUC), outperforming state-of-the-art methods. Conclusion: Our research outcome paves the way to create a device for cough monitoring in real-life situations. Significance: Our proposal is aligned with a more comfortable and less disruptive patientmonitoring, with benefits for patients (allows self-monitoring of cough symptoms), practitioners (e.g., assessment of treatments or better clinical nderstanding of cough patterns), and national health systems (by reducing hospitalizations).
    Materias (normalizadas)
    Ingeniería Biomédica
    Procesado de señal
    Bioingeniería
    Computación
    Materias Unesco
    1203.25 Diseño de Sistemas Sensores
    3306 Ingeniería y Tecnología Eléctricas
    Palabras Clave
    Cough detection, machine hearing, respiratory care, patient monitoring, spectral features
    ISSN
    0018-9294
    Revisión por pares
    SI
    DOI
    10.1109/TBME.2018.2888998
    Patrocinador
    This work was supported by the Digital Health & Care Institute Scotland as part of the Factory Research Project SmartCough/MacMasters. The authors would like to acknowledge support from University of the West of Scotland for partially funding C. Hoyos-Barcelo and J. Monge-Alvarez studentships. UWS acknowledges the financial support of NHS Research Scotland (NRS) through Edinburgh Clinical Research Facility. Acknowledgement is extended to Cancer Research UK for grant C59355/A22878.
    Version del Editor
    https://ieeexplore.ieee.org/document/8584081
    Propietario de los Derechos
    IEEE
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/71260
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TBE18.pdf
    Tamaño:
    1.657Mb
    Formato:
    Adobe PDF
    Descripción:
    Postprint artículo
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10