• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72441

    Título
    Linking crown fire likelihood with post-fire spectral variability in Mediterranean fire-prone ecosystems
    Autor
    Fernández Guisuraga, José Manuel
    Calvo, Leonor
    Quintano Pastor, María del CarmenAutoridad UVA Orcid
    Fernández Manso, Alfonso
    Fernandes, Paulo
    Año del Documento
    2024
    Editorial
    CSIRO
    Documento Fuente
    International Journal of Wildland Fire, 2024, 33,
    Abstract
    Background. Fire behaviour assessments of past wildfire events have major implications for anticipating post-fire ecosystem responses and fuel treatments to mitigate extreme fire behaviour of subsequent wildfires. Aims. This study evaluates for the first time the potential of remote sensing techniques to provide explicit estimates of fire type (surface fire, intermittent crown fire, and continuous crown fire) in Mediterranean ecosystems. Methods. Random Forest classification was used to assess the capability of spectral indices and multiple endmember spectral mixture analysis (MESMA) image fractions (char, photosynthetic vegetation, non- photosynthetic vegetation) retrieved from Sentinel-2 data to predict fire type across four large wildfires Key results. MESMA fraction images procured more accurate fire type estimates in broadleaf and conifer forests than spectral indices, without remarkable confusion among fire types. High crown fire likelihood in conifer and broadleaf forests was linked to a post-fire MESMA char fractional cover of about 0.8, providing a direct physical interpretation. Conclusions. Intrinsic biophysical characteristics such as the fractional cover of char retrieved from sub- pixel techniques with physical basis are accurate to assess fire type given the direct physical interpretation. Implications. MESMA may be leveraged by land managers to determine fire type across large areas, but further validation with field data is advised.
    Revisión por pares
    SI
    DOI
    10.1071/WF23174
    Patrocinador
    Spanish Ministry of Science and Innovation and NextGenerationEU funds, in the framework of the FIREMAP (TED2021-130925B-I00) project
    Regional Government of Castilla and León in the framework of the WUIFIRECYL (LE005P20) project
    Ramón Areces Foundation
    Version del Editor
    https://www.publish.csiro.au/WF/WF23174
    Propietario de los Derechos
    CSIRO
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/72441
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP69 - Artículos de revista [32]
    Show full item record
    Files in this item
    Nombre:
    2024 IJWF Linking crown fire.pdf
    Tamaño:
    3.927Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10