Show simple item record

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorMayo Iscar, Agustín 
dc.date.accessioned2024-12-13T23:03:14Z
dc.date.available2024-12-13T23:03:14Z
dc.date.issued2024
dc.identifier.citationWIREs Computational Statistics, 2024, vol. 16, n. 4, e1658es
dc.identifier.issn1939-5108
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/72570
dc.descriptionProducción Científica
dc.description.abstractClustering is one of the most widely used unsupervised learning techniques. However, it is well-known that outliers can have a significantly adverse impact on commonly applied clustering methods. On the other hand, clustered outliers can be particularly detrimental to (even robust) statistical procedures. Therefore, it makes sense to combine concepts from Robust Statistics and Cluster Analysis to deal with both clusters and outliers simultaneously through robust clustering approaches. Among the existing robust clustering techniques, we focus on those that rely on (impartial) trimming. Trimming offers the user an easy interpretation, as standard well-known clustering methods are applied after a fraction of the potentially most outlying observations is removed. This trimming approach, when combined with appropriate constraints on the clusters' dispersion parameters, has shown a good performance and can be implemented efficiently thorough available algorithms.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWileyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classificationclustering
dc.subject.classificationmodel-based clustering
dc.subject.classificationrobustness
dc.subject.classificationtrimming
dc.titleRobust clustering based on trimminges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)
dc.identifier.doi10.1002/wics.1658es
dc.relation.publisherversionhttps://wires.onlinelibrary.wiley.com/doi/10.1002/wics.1658es
dc.identifier.publicationissue4
dc.identifier.publicationtitleWIREs Computational Statistics
dc.identifier.publicationvolume16
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación PID2021-128314NB-I00 financiado por MCIN/AEI/10.13039/501100011033/FEDER.es
dc.identifier.essn1939-0068
dc.rightsAtribución 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1209 Estadística


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record