dc.contributor.author | García Escudero, Luis Ángel | |
dc.contributor.author | Mayo Iscar, Agustín | |
dc.date.accessioned | 2024-12-13T23:03:14Z | |
dc.date.available | 2024-12-13T23:03:14Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | WIREs Computational Statistics, 2024, vol. 16, n. 4, e1658 | es |
dc.identifier.issn | 1939-5108 | |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/72570 | |
dc.description | Producción Científica | |
dc.description.abstract | Clustering is one of the most widely used unsupervised learning techniques. However, it is well-known that outliers can have a significantly adverse impact on commonly applied clustering methods. On the other hand, clustered outliers can be particularly detrimental to (even robust) statistical procedures. Therefore, it makes sense to combine concepts from Robust Statistics and Cluster Analysis to deal with both clusters and outliers simultaneously through robust clustering approaches. Among the existing robust clustering techniques, we focus on those that rely on (impartial) trimming. Trimming offers the user an easy interpretation, as standard well-known clustering methods are applied after a fraction of the potentially most outlying observations is removed. This trimming approach, when combined with appropriate constraints on the clusters' dispersion parameters, has shown a good performance and can be implemented efficiently thorough available algorithms. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Wiley | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.classification | clustering | |
dc.subject.classification | model-based clustering | |
dc.subject.classification | robustness | |
dc.subject.classification | trimming | |
dc.title | Robust clustering based on trimming | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Author(s) | |
dc.identifier.doi | 10.1002/wics.1658 | es |
dc.relation.publisherversion | https://wires.onlinelibrary.wiley.com/doi/10.1002/wics.1658 | es |
dc.identifier.publicationissue | 4 | |
dc.identifier.publicationtitle | WIREs Computational Statistics | |
dc.identifier.publicationvolume | 16 | |
dc.peerreviewed | SI | es |
dc.description.project | Este trabajo forma parte del proyecto de investigación PID2021-128314NB-I00 financiado por MCIN/AEI/10.13039/501100011033/FEDER. | es |
dc.identifier.essn | 1939-0068 | |
dc.rights | Atribución 4.0 Internacional | |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1209 Estadística | |