Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72570
Título
Robust clustering based on trimming
Año del Documento
2024
Editorial
Wiley
Descripción
Producción Científica
Documento Fuente
WIREs Computational Statistics, 2024, vol. 16, n. 4, e1658
Abstract
Clustering is one of the most widely used unsupervised learning techniques. However, it is well-known that outliers can have a significantly adverse impact on commonly applied clustering methods. On the other hand, clustered outliers can be particularly detrimental to (even robust) statistical procedures. Therefore, it makes sense to combine concepts from Robust Statistics and Cluster Analysis to deal with both clusters and outliers simultaneously through robust clustering approaches. Among the existing robust clustering techniques, we focus on those that rely on (impartial) trimming. Trimming offers the user an easy interpretation, as standard well-known clustering methods are applied after a fraction of the potentially most outlying observations is removed. This trimming approach, when combined with appropriate constraints on the clusters' dispersion parameters, has shown a good performance and can be implemented efficiently thorough available algorithms.
Materias Unesco
1209 Estadística
Palabras Clave
clustering
model-based clustering
robustness
trimming
ISSN
1939-5108
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación PID2021-128314NB-I00 financiado por MCIN/AEI/10.13039/501100011033/FEDER.
Version del Editor
Propietario de los Derechos
© 2024 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
