Mostrar el registro sencillo del ítem
dc.contributor.author | García Escartín, Juan Carlos | |
dc.date.accessioned | 2024-12-17T16:12:20Z | |
dc.date.available | 2024-12-17T16:12:20Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Garcia-Escartin, J.C. Finding eigenvectors with a quantum variational algorithm. Quantum Inf Process 23, 254 (2024). | es |
dc.identifier.issn | 1573-1332 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/72722 | |
dc.description | Producción Científica | es |
dc.description.abstract | This paper presents a hybrid variational quantum algorithm that finds a random eigen- vector of a unitary matrix with a known quantum circuit. The algorithm is based on the SWAP test on trial states generated by a parametrized quantum circuit. The eigenvec- tor is described by a compact set of classical parameters that can be used to reproduce the found approximation to the eigenstate on demand. This variational eigenvector finder can be adapted to solve the generalized eigenvalue problem, to find the eigenvectors of normal matrices and to perform quantum principal component analysis on unknown input mixed states. These algorithms can all be run with low-depth quantum circuits, suitable for an efficient implementation on noisy intermediate-scale quantum computers and, with some restrictions, on linear optical systems. In full-scale quantum computers, where there might be optimization problems due to barren plateaus in larger systems, the proposed algorithms can be used as a primitive to boost known quantum algorithms. Limitations and potential applications are discussed. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject | Computación cuántica | es |
dc.subject | Algoritmos cuánticos | es |
dc.subject | Algoritmos variacionales | es |
dc.subject | Fotónica | es |
dc.subject.classification | Autovalores | es |
dc.subject.classification | Algoritmos cuánticos | es |
dc.subject.classification | Algoritmos variacionales | es |
dc.title | Finding eigenvectors with a quantum variational algorithm | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Autor: Juan Carlos García Escartín. Editor: Springer Nature | es |
dc.identifier.doi | https://doi.org/10.1007/s11128-024-04461-3 | es |
dc.relation.publisherversion | https://doi.org/10.1007/s11128-024-04461-3 | es |
dc.identifier.publicationfirstpage | 254-1 | es |
dc.identifier.publicationlastpage | 254-24 | es |
dc.identifier.publicationtitle | Quantum Information Processing | es |
dc.identifier.publicationvolume | 23 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación (MCIN), project PID2020-119418GB-I00 | es |
dc.description.project | European Union NextGeneration UE/MICIU/Plan de Recuperación, Transformación y Resiliencia/Junta de Castilla y León. | es |
dc.description.project | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 2210.23 Teoría Cuántica | es |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | es |
dc.subject.unesco | 2209 Óptica | es |