Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Santamónica, Adolfo
dc.contributor.authorCarratalá Sáez, Rocío
dc.contributor.authorLarriba González, Yolanda 
dc.contributor.authorPérez Castellanos, Alberto
dc.contributor.authorRueda Sabater, María Cristina 
dc.date.accessioned2024-12-20T08:01:23Z
dc.date.available2024-12-20T08:01:23Z
dc.date.issued2024
dc.identifier.citationComputer Methods and Programs in Biomedicine, 2024, vol. 246, 108053es
dc.identifier.issn0169-2607es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/72927
dc.descriptionProducción Científicaes
dc.description.abstractBackground and objective: The electrocardiogram (ECG) is the most important non-invasive method for elucidating information about heart and cardiovascular disease diagnosis. Typically, the ECG system manufacturing companies provide ECG images, but store the numerical data in a proprietary format that is not interpretable and is not therefore useful for automatic diagnosis. There have been many efforts to digitize paper-based ECGs. The main limitations of previous works in ECG digitization are that they require manual selection of the regions of interest, only partly provide signal digitization, and offer limited accuracy. Methods: We have developed the ECGMiner, an open-source software to digitize ECG images. It is precise, fast, and simple to use. This software digitizes ECGs in four steps: 1) recognizing the image composition; 2) removing the gridline; 3) extracting the signals; 4) post-processing and storing the data. Results: We have evaluated the ECGMiner digitization capabilities using the Pearson Correlation Coefficient (PCC) and the Root Mean Square Error (RMSE) measures, and we consider ECG from two large, public, and widely used databases, LUDB and PTB-XL. The actual and digitized values of signals in both databases have been compared. The software's ability to correctly identify the location of characteristic waves has also been validated. Specifically, the PCC values are between 0.971 and 0.995, and the RMSE values are between 0.011 and 0.031 mV. Conclusions: The ECGMiner software presented in this paper is open access, easy to install, easy to use, and capable of precisely recovering the paper-based/digital ECG signal data, regardless of the input format and signal complexity. ECGMiner outperforms existing digitization algorithms in terms of PCC and RMSE values.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationECGes
dc.subject.classificationImageses
dc.subject.classificationDigitizationes
dc.subject.classificationSoftwarees
dc.subject.classificationFMM modeles
dc.titleECGMiner: A flexible software for accurately digitizing ECGes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1016/j.cmpb.2024.108053es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S016926072400049Xes
dc.identifier.publicationfirstpage108053es
dc.identifier.publicationtitleComputer Methods and Programs in Biomedicinees
dc.identifier.publicationvolume246es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (PID2019-106363RB-I00)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem