• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72927

    Título
    ECGMiner: A flexible software for accurately digitizing ECG
    Autor
    Fernández Santamónica, Adolfo
    Carratalá Sáez, Rocío
    Larriba González, YolandaAutoridad UVA Orcid
    Pérez Castellanos, Alberto
    Rueda Sabater, María CristinaAutoridad UVA
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computer Methods and Programs in Biomedicine, abril 2024, vol. 246, 108053
    Abstract
    Background and objective: The electrocardiogram (ECG) is the most important non-invasive method for elucidating information about heart and cardiovascular disease diagnosis. Typically, the ECG system manufacturing companies provide ECG images, but store the numerical data in a proprietary format that is not interpretable and is not therefore useful for automatic diagnosis. There have been many efforts to digitize paper-based ECGs. The main limitations of previous works in ECG digitization are that they require manual selection of the regions of interest, only partly provide signal digitization, and offer limited accuracy. Methods: We have developed the ECGMiner, an open-source software to digitize ECG images. It is precise, fast, and simple to use. This software digitizes ECGs in four steps: 1) recognizing the image composition; 2) removing the gridline; 3) extracting the signals; 4) post-processing and storing the data. Results: We have evaluated the ECGMiner digitization capabilities using the Pearson Correlation Coefficient (PCC) and the Root Mean Square Error (RMSE) measures, and we consider ECG from two large, public, and widely used databases, LUDB and PTB-XL. The actual and digitized values of signals in both databases have been compared. The software's ability to correctly identify the location of characteristic waves has also been validated. Specifically, the PCC values are between 0.971 and 0.995, and the RMSE values are between 0.011 and 0.031 mV. Conclusions: The ECGMiner software presented in this paper is open access, easy to install, easy to use, and capable of precisely recovering the paper-based/digital ECG signal data, regardless of the input format and signal complexity. ECGMiner outperforms existing digitization algorithms in terms of PCC and RMSE values.
    Materias Unesco
    3314 Tecnología Médica
    Palabras Clave
    ECG
    Images
    Digitization
    Software
    FMM model
    ISSN
    0169-2607
    Revisión por pares
    SI
    DOI
    10.1016/j.cmpb.2024.108053
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (PID2019-106363RB-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S016926072400049X
    Propietario de los Derechos
    © 2024 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/72927
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP24 - Artículos de revista [77]
    Show full item record
    Files in this item
    Nombre:
    cmpb246_egcminer-flexible software-accurately-digitizing-ecg.pdf
    Tamaño:
    2.911Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10