Mostrar el registro sencillo del ítem
dc.contributor.author | Montes López, Daniel Alberto | |
dc.contributor.author | Pitarch Pérez, José Luis | |
dc.contributor.author | Prada Moraga, César de | |
dc.date.accessioned | 2025-01-08T13:47:50Z | |
dc.date.available | 2025-01-08T13:47:50Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Computers & Industrial Engineering, agosto 2024, vol. 194, 110393 | es |
dc.identifier.issn | 0360-8352 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/73165 | |
dc.description | Producción Científica | es |
dc.description.abstract | This paper presents a novel decomposition method for two-stage stochastic mixed-integer optimization problems. The algorithm builds upon the idea of similarity between finite sample sets to measure how similar the first-stage decisions are among the uncertainty realization scenarios. Using such a Similarity Index, the non-anticipative constraints are removed from the problem formulation so that the original problem becomes block-separable on a scenario basis. Then, a term for maximizing the Similarity Index is included in all the sub-problems objective functions. Such sub-problems are solved iteratively in parallel so that their solutions are used to update the weighting parameter for maximizing the Similarity Index. The algorithm obtains a feasible solution when full similarity among scenario first stages is reached, that is, when the incumbent solution is non-anticipative. The proposal is tested in four instances of different sizes of an industrial-like scheduling problem. Comparison results show that the Similarity Index Decomposition provides significant speed-ups compared with the monolithic problem formulation, and provides simpler tuning and improved convergence over the Progressive Hedging Algorithm. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Production planning | es |
dc.subject.classification | Mathematical programming | es |
dc.subject.classification | Uncertainty | es |
dc.subject.classification | Progressive hedging | es |
dc.subject.classification | Mixed-integer optimization | es |
dc.title | Similarity-based decomposition algorithm for two-stage stochastic scheduling | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Author(s) | es |
dc.identifier.doi | 10.1016/j.cie.2024.110393 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S036083522400514X | es |
dc.identifier.publicationfirstpage | 110393 | es |
dc.identifier.publicationtitle | Computers & Industrial Engineering | es |
dc.identifier.publicationvolume | 194 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación (PID2021-123654OB-C31, PID2021-123654OB-C32, PID2020-116585GB-I00) | es |
dc.description.project | Universidad de Valladolid y Banco Santander (contrato predoctoral UVa 2020) | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional