Mostrar el registro sencillo del ítem

dc.contributor.authorMontes López, Daniel Alberto
dc.contributor.authorPitarch Pérez, José Luis 
dc.contributor.authorPrada Moraga, César de 
dc.date.accessioned2025-01-08T13:47:50Z
dc.date.available2025-01-08T13:47:50Z
dc.date.issued2024
dc.identifier.citationComputers & Industrial Engineering, agosto 2024, vol. 194, 110393es
dc.identifier.issn0360-8352es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/73165
dc.descriptionProducción Científicaes
dc.description.abstractThis paper presents a novel decomposition method for two-stage stochastic mixed-integer optimization problems. The algorithm builds upon the idea of similarity between finite sample sets to measure how similar the first-stage decisions are among the uncertainty realization scenarios. Using such a Similarity Index, the non-anticipative constraints are removed from the problem formulation so that the original problem becomes block-separable on a scenario basis. Then, a term for maximizing the Similarity Index is included in all the sub-problems objective functions. Such sub-problems are solved iteratively in parallel so that their solutions are used to update the weighting parameter for maximizing the Similarity Index. The algorithm obtains a feasible solution when full similarity among scenario first stages is reached, that is, when the incumbent solution is non-anticipative. The proposal is tested in four instances of different sizes of an industrial-like scheduling problem. Comparison results show that the Similarity Index Decomposition provides significant speed-ups compared with the monolithic problem formulation, and provides simpler tuning and improved convergence over the Progressive Hedging Algorithm.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationProduction planninges
dc.subject.classificationMathematical programminges
dc.subject.classificationUncertaintyes
dc.subject.classificationProgressive hedginges
dc.subject.classificationMixed-integer optimizationes
dc.titleSimilarity-based decomposition algorithm for two-stage stochastic schedulinges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1016/j.cie.2024.110393es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S036083522400514Xes
dc.identifier.publicationfirstpage110393es
dc.identifier.publicationtitleComputers & Industrial Engineeringes
dc.identifier.publicationvolume194es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (PID2021-123654OB-C31, PID2021-123654OB-C32, PID2020-116585GB-I00)es
dc.description.projectUniversidad de Valladolid y Banco Santander (contrato predoctoral UVa 2020)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem