• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73165

    Título
    Similarity-based decomposition algorithm for two-stage stochastic scheduling
    Autor
    Montes López, Daniel Alberto
    Pitarch Pérez, José LuisAutoridad UVA Orcid
    Prada Moraga, César deAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computers & Industrial Engineering, agosto 2024, vol. 194, 110393
    Resumen
    This paper presents a novel decomposition method for two-stage stochastic mixed-integer optimization problems. The algorithm builds upon the idea of similarity between finite sample sets to measure how similar the first-stage decisions are among the uncertainty realization scenarios. Using such a Similarity Index, the non-anticipative constraints are removed from the problem formulation so that the original problem becomes block-separable on a scenario basis. Then, a term for maximizing the Similarity Index is included in all the sub-problems objective functions. Such sub-problems are solved iteratively in parallel so that their solutions are used to update the weighting parameter for maximizing the Similarity Index. The algorithm obtains a feasible solution when full similarity among scenario first stages is reached, that is, when the incumbent solution is non-anticipative. The proposal is tested in four instances of different sizes of an industrial-like scheduling problem. Comparison results show that the Similarity Index Decomposition provides significant speed-ups compared with the monolithic problem formulation, and provides simpler tuning and improved convergence over the Progressive Hedging Algorithm.
    Palabras Clave
    Production planning
    Mathematical programming
    Uncertainty
    Progressive hedging
    Mixed-integer optimization
    ISSN
    0360-8352
    Revisión por pares
    SI
    DOI
    10.1016/j.cie.2024.110393
    Patrocinador
    Ministerio de Ciencia e Innovación (PID2021-123654OB-C31, PID2021-123654OB-C32, PID2020-116585GB-I00)
    Universidad de Valladolid y Banco Santander (contrato predoctoral UVa 2020)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S036083522400514X
    Propietario de los Derechos
    © 2024 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/73165
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    similarity-based-decomposition-algorithm.pdf
    Tamaño:
    947.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10