dc.contributor.author | Cano Urdiales, Begoña | |
dc.contributor.author | Moreta Santos, María Jesús | |
dc.date.accessioned | 2025-01-09T07:17:20Z | |
dc.date.available | 2025-01-09T07:17:20Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | Journal of Computational and Applied Mathematics, enero 2025, vol. 453, 116158 | es |
dc.identifier.issn | 0377-0427 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/73254 | |
dc.description | Producción Científica | es |
dc.description.abstract | In a previous paper, a technique was described to avoid order reduction with exponential
Rosenbrock methods when integrating initial boundary value problems with time-dependent
boundary conditions. That requires to calculate some information on the boundary from the
given data. In the present paper we prove that, under some assumptions on the coefficients
of the method which are mainly always satisfied, no numerical differentiation is required to
approximate that information in order to achieve order 4 for parabolic problems with Dirichlet
boundary conditions. With Robin/Neumann ones, just numerical differentiation in time may be
necessary for order 4, but none for order ≤ 3.
Furthermore, as with this technique it is not necessary to impose any stiff order conditions,
in search of efficiency, we recommend some methods of classical orders 2, 3 and 4 and we give
some comparisons with several methods in the literature, with the corresponding stiff order. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Exponential Rosenbrock methods | es |
dc.subject.classification | Nonlinear reaction–diffusion problems | es |
dc.subject.classification | Avoiding order reduction in time | es |
dc.subject.classification | Efficiency | es |
dc.title | Efficient exponential Rosenbrock methods till order four | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Author(s) | es |
dc.identifier.doi | 10.1016/j.cam.2024.116158 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0377042724004072 | es |
dc.identifier.publicationfirstpage | 116158 | es |
dc.identifier.publicationtitle | Journal of Computational and Applied Mathematics | es |
dc.identifier.publicationvolume | 453 | es |
dc.peerreviewed | SI | es |
dc.description.project | Junta de Castilla y León/FEDER (VA169P20) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 12 Matemáticas | es |