• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73254

    Título
    Efficient exponential Rosenbrock methods till order four
    Autor
    Cano Urdiales, BegoñaAutoridad UVA Orcid
    Moreta Santos, María Jesús
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Computational and Applied Mathematics, enero 2025, vol. 453, 116158
    Abstract
    In a previous paper, a technique was described to avoid order reduction with exponential Rosenbrock methods when integrating initial boundary value problems with time-dependent boundary conditions. That requires to calculate some information on the boundary from the given data. In the present paper we prove that, under some assumptions on the coefficients of the method which are mainly always satisfied, no numerical differentiation is required to approximate that information in order to achieve order 4 for parabolic problems with Dirichlet boundary conditions. With Robin/Neumann ones, just numerical differentiation in time may be necessary for order 4, but none for order ≤ 3. Furthermore, as with this technique it is not necessary to impose any stiff order conditions, in search of efficiency, we recommend some methods of classical orders 2, 3 and 4 and we give some comparisons with several methods in the literature, with the corresponding stiff order.
    Materias Unesco
    12 Matemáticas
    Palabras Clave
    Exponential Rosenbrock methods
    Nonlinear reaction–diffusion problems
    Avoiding order reduction in time
    Efficiency
    ISSN
    0377-0427
    Revisión por pares
    SI
    DOI
    10.1016/j.cam.2024.116158
    Patrocinador
    Junta de Castilla y León/FEDER (VA169P20)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0377042724004072
    Propietario de los Derechos
    © 2024 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/73254
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    efficient-exponential-rosenbrock-methods.pdf
    Tamaño:
    607.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10