Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73292
Título
Mathematical properties and numerical approximation of pseudo-parabolic systems
Año del Documento
2024-07-01
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Computers & Mathematics with Applications, July 2024,165, p. 163-179.
Resumo
The paper is concerned with the mathematical theory and numerical approximation of systems of partial differential equations (pde) of hyperbolic, pseudo-parabolic type. Some mathematical properties of the initial-boundary-value problem (ibvp) with Dirichlet boundary conditions are first studied. They include the weak formulation, well- posedness and existence of traveling wave solutions connecting two states, when the equations are considered as a variant of a conservation law. Then, the numerical approximation consists of a spectral approximation in space based on Legendre polynomials along with a temporal discretization with strong stability preserving (SSP) property. The convergence of the semidiscrete approximation is proved under suitable regularity conditions on the data. The choice of the temporal discretization is justified in order to guarantee the stability of the full discretization when dealing with nonsmooth initial conditions. A computational study explores the performance of the fully discrete scheme with regular and nonregular data.
Materias (normalizadas)
Matemática aplicada
Materias Unesco
1206.13 Ecuaciones Diferenciales en Derivadas Parciales
Palabras Clave
Pseudo-paraboic systems; spectral approxinmations
ISSN
0898-1221
Revisión por pares
SI
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Arquivos deste item
