• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73305

    Título
    Electrical conductivity field analysis: A prognostic instrument for real time monitoring of friction stir welding process
    Autor
    Mazzeschi, Mattia
    Sanz, Miguel
    Monge, Julio C.
    Cañibano Álvarez, EstebanAutoridad UVA
    Rodríguez Juan, Carlos P.
    Nuñez Carrero, Karina CarlaAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Manufacturing Processes, diciembre 2024, vol. 131, p. 93-110
    Resumen
    Constant monitoring of manufacturing processes is crucial for ensuring high-quality products and cost-effectiveness. Non-destructive testing (NDT) techniques, such as eddy current testing (ECT), offer a direct and accurate means of evaluating weld quality in real-time. ECT can assess microstructural changes in welded materials by measuring electrical conductivity. Establishing a robust correlation between electrical conductivity and microstructural changes induced by FSW process parameters remains a critical step to bridge existing knowledge gaps. In this study, electrical conductivity field analysis using eddy currents was conducted on AA6082-T6 FSW joints. A pivotal factor controlling process heat input and influencing defect formation and weld microstructural features is the ratios of FSW tool rotational speed (ω) to travel speed (v). Previous works often evaluated only one set of process parameters, while our study examines multiple combinations of ω and welding speed v to develop a more robust correlation between electrical conductivity and microstructural changes. Both defective and defect-free joints were obtained employing various ω/v ratio and electrical conductivity results were compared with hardness measurements and tensile test results. The analysis reveals a consistent trend between electrical conductivity variations, microstructural changes in weld zones, and microhardness as the ω/ν ratio varies. Our findings show that, at a constant travel speed, an increasing ω/ν ratio is associated with enhanced microhardness and decreased electrical conductivity, attributed to grain refinement. Conversely, at a constant rotational speed, a higher ω/ν ratio leads to increased electrical conductivity, due to the enhanced dissolution of strengthening precipitates. Furthermore, analyzing electrical conductivity profiles and identifying local maxima corresponding to weld failure zones could strengthen the correlation. This approach suggests the potential to assess variations in mechanical properties resulting from process drift, specifically influenced by changes in the ω/v parameter over time. Microstructural analysis through electrical conductivity evaluation emerges as a valuable and predictive tool for assessing weld properties, with promising applications in process monitoring.
    Palabras Clave
    Non-destructive testing
    Eddy current testing
    Electrical conductivity
    Friction stir welding
    Aluminum alloys
    Microhardness
    ISSN
    1526-6125
    Revisión por pares
    SI
    DOI
    10.1016/j.jmapro.2024.09.005
    Patrocinador
    Plan de Recuperación, Transformación y Resiliencia (C17.1)
    Universidad de Valladolid (contrato posdoctal 2020)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1526612524009113
    Propietario de los Derechos
    © 2024 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/73305
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP32 - Artículos de revista [284]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    electrical-conductivity-field-analysis-prognostic-instrument.pdf
    Tamaño:
    16.23Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10