• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73761

    Título
    On the use of Deep Neural Networks to improve flights estimated time of arrival predictions
    Autor
    Silvestre Vilches, JorgeAutoridad UVA Orcid
    de Santiago, Miguel
    Bregón Bregón, AníbalAutoridad UVA
    Martínez Prieto, Miguel AngelAutoridad UVA Orcid
    Álvarez Esteban, Pedro CésarAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Engineering Proceedings, vol. 13, n. 1, 3
    Resumen
    La previsibilidad de las operaciones es la base de una gestión eficaz del tráfico aéreo. En este contexto, estimar con precisión la hora de llegada al aeropuerto de destino es fundamental para tomar decisiones tácticas sobre una programación óptima de las operaciones de aterrizaje y despegue. En este trabajo, evaluamos diferentes modelos de aprendizaje profundo basados en arquitecturas LSTM para predecir la hora estimada de llegada de vuelos comerciales, utilizando principalmente datos de vigilancia de OpenSky Network. Observamos que el número de estados previos del vuelo utilizados para realizar la predicción tiene gran influencia en la precisión de la estimación, independientemente de la arquitectura. El mejor modelo, con una longitud de secuencia de entrada de 50, ha registrado un MAE de 3,33 min y un RMSE de 5,42 min en el conjunto de prueba, con valores de MAE de 5,67 y 2,13 min 90 y 15 min antes del final del vuelo, respectivamente.
     
    Predictable operations are the basis of efficient air traffic management. In this context, accurately estimating the arrival time to the destination airport is fundamental to make tactical decisions about an optimal schedule of landing and take-off operations. In this paper, we evaluate different deep learning models based on LSTM architectures for predicting estimated time of arrival of commercial flights, mainly using surveillance data from OpenSky Network. We observed that the number of previous states of the flight used to make the prediction have great influence on the accuracy of the estimation, independently of the architecture. The best model, with an input sequence length of 50, has reported a MAE of 3.33 min and a RMSE of 5.42 min on the test set, with MAE values of 5.67 and 2.13 min 90 and 15 min before the end of the flight, respectively.
    Materias Unesco
    1203.04 Inteligencia Artificial
    Palabras Clave
    Estimated time of arrival
    ADS-B
    LSTM networks
    Recurrent neural networks
    Deep learning
    Air traffic management
    Revisión por pares
    SI
    DOI
    10.3390/ENGPROC2021013003
    Patrocinador
    Ministerio de Ciencia e Innovación (PID2020-114635RB-I00, PID2021-126659OB-I00, PID2021-128314NBI00)
    Universidad de Valladolid y Banco Santander.
    Version del Editor
    https://www.mdpi.com/2673-4591/13/1/3
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/73761
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [108]
    • DEP24 - Artículos de revista [77]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    engproc-13-00003.pdf
    Tamaño:
    1.380Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10