Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73881
Título
Fuzzy logic-based approaches in supply chain risk management: a review
Serie
Studies in Computational Intelligence, 953
Año del Documento
2021
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Witold Pedrycz, Luis Martínez, Rafael Alejandro Espin-Andrade, Gilberto Rivera, Jorge Marx Gómez (eds.). Computational Intelligence for Business Analytics. 2021, p. 79-94.
Resumen
Uncertainty is inherent in the supply chains nature. In the context of various uncertainties, risk management plays a crucial role in effective supply chain management. The uncertainty involved in the risk assessment process can be divided into two types: random uncertainty and epistemic uncertainty. The fuzzy theory has been applied to address uncertainties in this context. The purpose of this paper is to develop a literature review of the major contributions of fuzzy logic in addressing uncertainty in supply chain risk management approaches. The results revealed that integration with disruptive analysis tools and multi-criteria decision-making methods are the most common types adopted, with the increasing trend of Petri nets and Bayesian approaches. The reviewed literature highlights some limitations related to the holistic complexity of risks in supply chains, the dynamic nature of the environment, and the reliability of the knowledge base in the assessment. In that sense, these observations reveal interesting future lines of research.
Palabras Clave
Fuzzy sets
Risk management
Uncertainty
Subjectivity
Supply chain
Decision making
ISBN
978-3-030-73818-1
Version del Editor
Propietario de los Derechos
© The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem
Nombre:
fuzzy-logic-based-approaches-supply-chain-risk-management-review.pdfEmbargado hasta: 9999-12-31
Tamaño:
11.12Mb
Formato:
Adobe PDF