Mostrar el registro sencillo del ítem

dc.contributor.authorPhan, Brandon
dc.contributor.authorRamprasad, Rampi
dc.contributor.authorGonzález Del Rio, Beatriz 
dc.date.accessioned2025-01-16T18:59:22Z
dc.date.available2025-01-16T18:59:22Z
dc.date.issued2023
dc.identifier.citationnpj Computational Materials, 2023, vol. 9, n. 158es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/73979
dc.descriptionProducción Científicaes
dc.description.abstractDensity functional theory (DFT) has been a critical component of computational materials research and discovery for decades. However, the computational cost of solving the central Kohn–Sham equation remains a major obstacle for dynamical studies of complex phenomena at-scale. Here, we propose an end-to-end machine learning (ML) model that emulates the essence of DFT by mapping the atomic structure of the system to its electronic charge density, followed by the prediction of other properties such as density of states, potential energy, atomic forces, and stress tensor, by using the atomic structure and charge density as input. Our deep learning model successfully bypasses the explicit solution of the Kohn-Sham equation with orders of magnitude speedup (linear scaling with system size with a small prefactor), while maintaining chemical accuracy. We demonstrate the capability of this ML-DFT concept for an extensive database of organic molecules, polymer chains, and polymer crystals.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherNATURE PORTFOLIOes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA deep learning framework to emulate density functional theoryes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1038/s41524-023-01115-3es
dc.identifier.publicationissue158es
dc.identifier.publicationtitlenpj Computational Materialses
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigacion: National Science Foundation Award Numbers 1900017 and 1941029 y por el Office of Naval Research Award Number N00014-18-1-2113.es
dc.identifier.essn2057-3960es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem