Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73979
Título
A deep learning framework to emulate density functional theory
Año del Documento
2023
Editorial
NATURE PORTFOLIO
Descripción
Producción Científica
Documento Fuente
npj Computational Materials, 2023, vol. 9, n. 158
Resumen
Density functional theory (DFT) has been a critical component of computational materials research and discovery for decades. However, the computational cost of solving the central Kohn–Sham equation remains a major obstacle for dynamical studies of complex phenomena at-scale. Here, we propose an end-to-end machine learning (ML) model that emulates the essence of DFT by mapping the atomic structure of the system to its electronic charge density, followed by the prediction of other properties such as density of states, potential energy, atomic forces, and stress tensor, by using the atomic structure and charge density as input. Our deep learning model successfully bypasses the explicit solution of the Kohn-Sham equation with orders of magnitude speedup (linear scaling with system size with a small prefactor), while maintaining chemical accuracy. We demonstrate the capability of this ML-DFT concept for an extensive database of organic molecules, polymer chains, and polymer crystals.
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigacion: National Science Foundation Award Numbers 1900017 and 1941029 y por el Office of Naval Research Award Number N00014-18-1-2113.
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional