Mostrar el registro sencillo del ítem

dc.contributor.authorÁlvarez González, Daniel 
dc.contributor.authorCerezo Hernández, Ana
dc.contributor.authorCrespo, Andrea
dc.contributor.authorGutierrez Tobal, Gonzalo César 
dc.contributor.authorVaquerizo Villar, Fernando 
dc.contributor.authorBarroso García, Verónica 
dc.contributor.authorMoreno, Fernando
dc.contributor.authorArroyo, C. Ainhoa
dc.contributor.authorRuiz, Tomás
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorCampo Matias, Félix del 
dc.date.accessioned2025-01-20T16:39:01Z
dc.date.available2025-01-20T16:39:01Z
dc.date.issued2020
dc.identifier.citationScientific Reports, 2020; vol. 10, p. 5332es
dc.identifier.issn2045-2322es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74121
dc.descriptionProducción Científicaes
dc.description.abstractThe most appropriate physiological signals to develop simplified as well as accurate screening tests for obstructive sleep apnoea (OSA) remain unknown. This study aimed at assessing whether joint analysis of at-home oximetry and airflow recordings by means of machine-learning algorithms leads to a significant diagnostic performance increase compared to single-channel approaches. Consecutive patients showing moderate-to-high clinical suspicion of OSA were involved. The apnoea-hypopnoea index (AHI) from unsupervised polysomnography was the gold standard. Oximetry and airflow from at-home polysomnography were parameterised by means of 38 time, frequency, and non-linear variables. Complementarity between both signals was exhaustively inspected via automated feature selection. Regression support vector machines were used to estimate the AHI from single-channel and dual-channel approaches. A total of 239 patients successfully completed at-home polysomnography. The optimum joint model reached 0.93 (95%CI 0.90–0.95) intra-class correlation coefficient between estimated and actual AHI. Overall performance of the dual-channel approach (kappa: 0.71; 4-class accuracy: 81.3%) significantly outperformed individual oximetry (kappa: 0.61; 4-class accuracy: 75.0%) and airflow (kappa: 0.42; 4-class accuracy: 61.5%). According to our findings, oximetry alone was able to reach notably high accuracy, particularly to confirm severe cases of the disease. Nevertheless, oximetry and airflow showed high complementarity leading to a remarkable performance increase compared to single-channel approaches. Consequently, their joint analysis via machine learning enables accurate abbreviated screening of OSA at home.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSPRINGER NATUREes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA machine learning-based test for adult sleep apnoea screening at home using oximetry and airflowes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderÁlvarez D. et al.es
dc.identifier.doi10.1038/s41598-020-62223-4es
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-020-62223-4es
dc.identifier.publicationtitleScientific Reportses
dc.identifier.publicationvolume10es
dc.peerreviewedSIes
dc.description.projectThis work has been partially supported by “Sociedad Española de Neumología y Cirugía Torácica” (SEPAR) under project 66/2016; “Gerencia Regional de Salud de Castilla y León” under project GRS 1472/A/17; “Ministerio de Ciencia Innovación y Universidades” and European Regional Development Fund (FEDER) under project DPI2017-84280-R; and by CIBER-BBN (ISCIII), co-funded with FEDER funds. F. Vaquerizo-Villar was in receipt of a “Ayuda para contratos predoctorales para la Formación de Profesorado Universitario (FPU)” grant from the “Ministerio de Educación, Cultura y Deporte” (FPU16/02938). V. Barroso-García was funded by the grant “Ayuda para financiar la contratación predoctoral de personal investigador” from the “Consejería de Educación de la Junta de Castilla y León” and the European Social Fund.es
dc.identifier.essn2045-2322es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem