Mostrar el registro sencillo del ítem
dc.contributor.author | Levy, Jeremy | |
dc.contributor.author | Álvarez, Daniel | |
dc.contributor.author | Del Campo, Félix | |
dc.contributor.author | Behar, Joachim A. | |
dc.date.accessioned | 2025-01-20T17:07:25Z | |
dc.date.available | 2025-01-20T17:07:25Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Nature Communications, 2023, vol. 14, p. 4881 | es |
dc.identifier.issn | 2041-1723 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/74130 | |
dc.description | Producción Científica | es |
dc.description.abstract | Obstructive sleep apnea (OSA) is a serious medical condition with a high prevalence, although diagnosis remains a challenge. Existing home sleep tests may provide acceptable diagnosis performance but have shown several limitations. In this retrospective study, we used 12,923 polysomnography recordings from six independent databases to develop and evaluate a deep learning model, calledOxiNet, for the estimation of the apnea-hypopnea index from the oximetry signal. We evaluated OxiNet performance across ethnicity, age, sex, and comorbidity. OxiNet missed 0.2% of all test set moderate-tosevere OSA patients against 21% for the best benchmark. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | SPRINGER NATURE | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | Levy L et al. | es |
dc.identifier.doi | 10.1038/s41467-023-40604-3 | es |
dc.relation.publisherversion | https://www.nature.com/articles/s41467-023-40604-3 | es |
dc.identifier.publicationissue | 1 | es |
dc.identifier.publicationtitle | Nature Communications | es |
dc.identifier.publicationvolume | 14 | es |
dc.peerreviewed | SI | es |
dc.description.project | J.A.B. and J.L. acknowledge the financial support of Israel PBC-VATAT and by the Technion Center for Machine Learning and Intelligent Systems (MLIS). D.Á. is supported by a “Ramón y Cajal” grant (RYC2019-028566-I) from the “Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación” co-funded by the European Social Fund and in part by Sociedad Española de Neumología y Cirugía Torácica (SEPAR) under project 649/2018 and by Sociedad Española de Sueño (SES) under the project “Beca de Investigación SES 2019. In addition, D.Á. has been partially supported by “CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)” through “Instituto de Salud Carlos III” co-funded with FEDER funds. | es |
dc.identifier.essn | 2041-1723 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional