Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74146
Título
Differential stability properties in convex scalar and vector optimization
Año del Documento
2021
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Set-Valued and Variational Analysis, 2021, vol. 29, n. 4 p. 893-914
Zusammenfassung
This paper focuses on formulas for the ε-subdifferential of the optimal value function of scalar and vector convex optimization problems. These formulas can be applied when the set of solutions of the problem is empty. In the scalar case, both unconstrained problems and problems with an inclusion constraint are considered. For the last ones, limiting results are derived, in such a way that no qualification conditions are required. The main mathematical tool is a limiting calculus rule for the ε-subdifferential of the sum of convex and lower semicontinuous functions defined on a (non necessarily reflexive) Banach space. In the
vector case, unconstrained problems are studied and exact formulas are derived by linear scalarizations. These results are based on a concept of infimal set, the notion of cone proper set and an ε-subdifferential for convex vector functions due to Taa.
Palabras Clave
Differential stability
ε-subdifferential
Parametric convex programming
Limiting calculus rule
Optimal value function
Approximate solution
Vector optimization
Infimal set
Cone proper set
Weak minimal solution
ISSN
1877-0533
Revisión por pares
SI
Patrocinador
This research was partially supported by the Mathematics Research Institute of the University of Valladolid (IMUVA), the Simons Foundation Grant Targeted for Institute of Mathematics, Vietnam Academy of Science and Technology and Thai Nguyen University of Sciences (Vietnam) and the Ministerio de Ciencia e Innovación (MCI), Agencia Estatal de Investigación (AEI) (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) under project PID2020-112491GB-I00 (MCI/AEI/FEDER, UE)
Version del Editor
Propietario de los Derechos
Springer
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
