Mostrar el registro sencillo del ítem

dc.contributor.authorGalende Hernández, Marta 
dc.contributor.authorSáinz Palmero, Gregorio Ismael 
dc.contributor.authorFuente Aparicio, María Jesús de la 
dc.date.accessioned2025-01-24T19:09:44Z
dc.date.available2025-01-24T19:09:44Z
dc.date.issued2012
dc.identifier.citationSoft Comput 16, 451–470 (2012)es
dc.identifier.issn1432-7643es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74370
dc.descriptionProducción Científicaes
dc.description.abstractThe aim of this paper is to develop a general post-processing methodology to reduce the complexity of data-driven linguistic fuzzy models, in order to reach simpler fuzzy models preserving enough accuracy and better fuzzy linguistic performance with respect to their initial values. This post-processing approach is based on rule selection via the formulation of a bi-objective problem with one objective focusing on accuracy and the other on interpretability. The latter is defined via the aggregation of several interpretability measures, based on the concepts of similarity and complexity of fuzzy systems and rules. In this way, a measure of the fuzzy model interpretability is given. Two neuro-fuzzy systems for providing initial fuzzy models, Fuzzy Adaptive System ART based and Neuro-Fuzzy Function Approximation and several case studies, data sets from KEEL Project Repository, are used to check this approach. Both fuzzy and neuro-fuzzy systems generate Mamdani-type fuzzy rule-based systems, each with its own particularities and complexities from the point of view of the fuzzy sets and the rule generation. Based on these systems and data sets, several fuzzy models are generated to check the performance of the proposal under different restrictions of complexity and fuzziness.en
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Naturees
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationFuzzy modeling
dc.subject.classificationAccuracy
dc.subject.classificationInterpretability
dc.subject.classificationComplexity
dc.subject.classificationGenetic algorithms
dc.titleComplexity reduction and interpretability improvement for fuzzy rule systems based on simple interpretability measures and indices by bi-objective evolutionary rule selectiones
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderSpringer-Verlages
dc.identifier.doi10.1007/S00500-011-0748-6es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00500-011-0748-6es
dc.identifier.publicationfirstpage451es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage470es
dc.identifier.publicationtitleSoft Computinges
dc.identifier.publicationvolume16es
dc.peerreviewedSIes
dc.description.projectSpanish Ministry of Science and Innovation under Grants no. CIT-460000-2009-46 and DPI2009-14410-C02-02es
dc.identifier.essn1433-7479es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem