• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74370

    Título
    Complexity reduction and interpretability improvement for fuzzy rule systems based on simple interpretability measures and indices by bi-objective evolutionary rule selection
    Autor
    Galende Hernández, MartaAutoridad UVA Orcid
    Sáinz Palmero, Gregorio IsmaelAutoridad UVA Orcid
    Fuente Aparicio, María Jesús de laAutoridad UVA Orcid
    Año del Documento
    2012
    Editorial
    Springer Nature
    Descripción
    Producción Científica
    Documento Fuente
    Soft Comput 16, 451–470 (2012)
    Resumo
    The aim of this paper is to develop a general post-processing methodology to reduce the complexity of data-driven linguistic fuzzy models, in order to reach simpler fuzzy models preserving enough accuracy and better fuzzy linguistic performance with respect to their initial values. This post-processing approach is based on rule selection via the formulation of a bi-objective problem with one objective focusing on accuracy and the other on interpretability. The latter is defined via the aggregation of several interpretability measures, based on the concepts of similarity and complexity of fuzzy systems and rules. In this way, a measure of the fuzzy model interpretability is given. Two neuro-fuzzy systems for providing initial fuzzy models, Fuzzy Adaptive System ART based and Neuro-Fuzzy Function Approximation and several case studies, data sets from KEEL Project Repository, are used to check this approach. Both fuzzy and neuro-fuzzy systems generate Mamdani-type fuzzy rule-based systems, each with its own particularities and complexities from the point of view of the fuzzy sets and the rule generation. Based on these systems and data sets, several fuzzy models are generated to check the performance of the proposal under different restrictions of complexity and fuzziness.
    Palabras Clave
    Fuzzy modeling
    Accuracy
    Interpretability
    Complexity
    Genetic algorithms
    ISSN
    1432-7643
    Revisión por pares
    SI
    DOI
    10.1007/S00500-011-0748-6
    Patrocinador
    Spanish Ministry of Science and Innovation under Grants no. CIT-460000-2009-46 and DPI2009-14410-C02-02
    Version del Editor
    https://link.springer.com/article/10.1007/s00500-011-0748-6
    Propietario de los Derechos
    Springer-Verlag
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74370
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    2012-SOCO_articlesoco2010_vfinal_47.pdf
    Tamaño:
    653.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10