Mostrar el registro sencillo del ítem

dc.contributor.authorGacto, María José
dc.contributor.authorGalende Hernández, Marta 
dc.contributor.authorAlcalá, Rafael
dc.contributor.authorHerrera, Francisco
dc.date.accessioned2025-01-24T19:38:15Z
dc.date.available2025-01-24T19:38:15Z
dc.date.issued2014
dc.identifier.citationInformation Sciences, 276, 63-79es
dc.identifier.issn0020-0255es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74373
dc.descriptionProducción Científicaes
dc.description.abstractIn this contribution, we propose a two-stage method for Accurate Fuzzy Modeling in High-Dimensional Regression Problems using Approximate Takagi–Sugeno–Kang Fuzzy Rule-Based Systems. In the first stage, an evolutionary data base learning is performed (involving variables, granularities and slight fuzzy partition displacements) together with an inductive rule base learning within the same process. The second stage is a post-processing process to perform a rule selection and a scatter-based tuning of the membership functions for further refinement of the learned solutions. Moreover, the second stage incorporates an efficient Kalman filter to learn the coefficients of the consequent polynomial function in the Takagi–Sugeno–Kang rules. Both stages include mechanisms that significantly improve the accuracy of the model and ensure a fast convergence in high-dimensional and large-scale regression datasets. We tested our approach on 28 real-world datasets with different numbers of variables and instances. Five well-known methods have been executed as references. We compared the different approaches by applying non-parametric statistical tests for pair-wise and multiple comparisons. The results confirm the effectiveness of the proposed method, showing better results in accuracy within a reasonable computing time.en
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationAccurate fuzzy modeling
dc.subject.classificationTakagi–Sugeno–Kang rules
dc.subject.classificationMulti-objective genetic algorithms
dc.subject.classificationEmbedded genetic data base learning
dc.subject.classificationRegression
dc.subject.classificationHigh-dimensional and large-scale problems
dc.titleMETSK-HDe: A multiobjective evolutionary algorithm to learn accurate TSK-fuzzy systems in high-dimensional and large-scale regression problemses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doi10.1016/J.INS.2014.02.047es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0020025514001534es
dc.identifier.publicationfirstpage63es
dc.identifier.publicationlastpage79es
dc.identifier.publicationtitleInformation Scienceses
dc.identifier.publicationvolume276es
dc.peerreviewedSIes
dc.description.projectAndalusian Government under Grant no. P10-TIC-6858 and the Spanish Ministry of Science and Innovation under Grants nos. TIN2011-28488, DPI2012-39381-C02-02 and TIN2012-33856es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem