• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74373

    Título
    METSK-HDe: A multiobjective evolutionary algorithm to learn accurate TSK-fuzzy systems in high-dimensional and large-scale regression problems
    Autor
    Gacto, María José
    Galende Hernández, MartaAutoridad UVA Orcid
    Alcalá, Rafael
    Herrera, Francisco
    Año del Documento
    2014
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Information Sciences, 276, 63-79
    Resumen
    In this contribution, we propose a two-stage method for Accurate Fuzzy Modeling in High-Dimensional Regression Problems using Approximate Takagi–Sugeno–Kang Fuzzy Rule-Based Systems. In the first stage, an evolutionary data base learning is performed (involving variables, granularities and slight fuzzy partition displacements) together with an inductive rule base learning within the same process. The second stage is a post-processing process to perform a rule selection and a scatter-based tuning of the membership functions for further refinement of the learned solutions. Moreover, the second stage incorporates an efficient Kalman filter to learn the coefficients of the consequent polynomial function in the Takagi–Sugeno–Kang rules. Both stages include mechanisms that significantly improve the accuracy of the model and ensure a fast convergence in high-dimensional and large-scale regression datasets. We tested our approach on 28 real-world datasets with different numbers of variables and instances. Five well-known methods have been executed as references. We compared the different approaches by applying non-parametric statistical tests for pair-wise and multiple comparisons. The results confirm the effectiveness of the proposed method, showing better results in accuracy within a reasonable computing time.
    Palabras Clave
    Accurate fuzzy modeling
    Takagi–Sugeno–Kang rules
    Multi-objective genetic algorithms
    Embedded genetic data base learning
    Regression
    High-dimensional and large-scale problems
    ISSN
    0020-0255
    Revisión por pares
    SI
    DOI
    10.1016/J.INS.2014.02.047
    Patrocinador
    Andalusian Government under Grant no. P10-TIC-6858 and the Spanish Ministry of Science and Innovation under Grants nos. TIN2011-28488, DPI2012-39381-C02-02 and TIN2012-33856
    Version del Editor
    https://www.sciencedirect.com/science/article/abs/pii/S0020025514001534
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74373
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    2014_INS_D-12-1098R1.pdf
    Tamaño:
    406.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10