Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74395
Título
Robust clustering for functional data based on trimming and constraints
Año del Documento
2019
Editorial
Springer
Documento Fuente
Advances in Data Analysis and Classification, 13(1), 201-225.
Abstract
Many clustering algorithms when the data are curves or functions have been recently proposed. However, the presence of contamination in the sample of curves can influence the performance of most of them. In this work we propose a robust, model-based clustering method that relies on an approximation to the “density function” for functional data. The robustness follows from the joint application of data-driven trimming, for reducing the effect of contaminated observations, and constraints on the variances, for avoiding spurious clusters in the solution. The algorithm is designed to perform clustering and outlier detection simultaneously by maximizing a trimmed “pseudo” likelihood. The proposed method has been evaluated and compared with other existing methods through a simulation study.Better performance for the proposed methodology is shown when a fraction of contaminating curves is added to a non-contaminated sample. Finally, an application to a real data set that has been previously considered in the literature is given.
Revisión por pares
SI
Patrocinador
Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, grant VA005P17.
Conacyt, Mexico Projects 169175 Análisis Estadístico de Olas Marinas, Fase II y 234057 Análisis Espectral, Datos Funcionales y Aplicaciones).
Conacyt, Mexico Projects 169175 Análisis Estadístico de Olas Marinas, Fase II y 234057 Análisis Espectral, Datos Funcionales y Aplicaciones).
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Collections
Files in this item
Tamaño:
1.586Mb
Formato:
Adobe PDF