Mostrar el registro sencillo del ítem
dc.contributor.author | Vegas, Jesús | |
dc.contributor.author | Rao, A. Ravishankar | |
dc.contributor.author | Llamas, César | |
dc.date.accessioned | 2025-01-28T14:13:30Z | |
dc.date.available | 2025-01-28T14:13:30Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Sensors, Agosto 2024, vol. 24, n. 15. | es |
dc.identifier.issn | 1424-8220 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/74516 | |
dc.description | Producción Científica | es |
dc.description.abstract | Door access control systems are important to protect the security and integrity of physical spaces. Accuracy and speed are important factors that govern their performance. In this paper, we investigate a novel approach to identify users by measuring patterns of their interactions with a doorknob via an embedded accelerometer and gyroscope and by applying deep-learning-based algorithms to these measurements. Our identification results obtained from 47 users show an accuracy of 90.2%. When the sex of the user is used as an input feature, the accuracy is 89.8% in the case of male individuals and 97.0% in the case of female individuals. We study how the accuracy is affected by the sample duration, finding that is its possible to identify users using a sample of 0.5 s with an accuracy of 68.5%. Our results demonstrate the feasibility of using patterns of motor activity to provide access control, thus extending with it the set of alternatives to be considered for behavioral biometrics. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.subject.classification | access control | es |
dc.subject.classification | User identification | es |
dc.subject.classification | IoT | es |
dc.subject.classification | sensors | es |
dc.subject.classification | machine learning | es |
dc.title | Deep Learning System for User Identification Using Sensors on Doorknobs | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | CC BY 4.0 - © 2024 by the authors. Licensee MDPI, Basel, Switzerland | es |
dc.identifier.doi | 10.3390/S24155072 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/24/15/5072 | es |
dc.identifier.publicationfirstpage | 5072 | es |
dc.identifier.publicationissue | 15 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 24 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | CC0 1.0 Universal | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como CC0 1.0 Universal