• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74578

    Título
    Quantum tunneling facilitates water motion across the surface of phenanthrene
    Autor
    Loru, Donatella
    Steber, Amanda Lee
    Pérez Cuadrado, Cristobal
    Obenchain, Daniel A.
    Temelso, Berhane
    López Alonso, Juan CarlosAutoridad UVA Orcid
    Schnell, Melanie
    Año del Documento
    2023-07-26
    Editorial
    American Chemical Society
    Descripción
    Producción Científica
    Documento Fuente
    Journal of the American Chemical Society, julio 2023, vol. 145, n. 31, p. 17201-17210
    Resumen
    Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O–H···π hydrogen bonds, in which phenanthrene acts as the hydrogen-bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H218O, D2O, and HDO isotopologues of the phenanthrene–H2O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunneling motion of water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunneling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic aromatic hydrocarbons and graphene.
    Materias (normalizadas)
    Química Física
    Espectroscopía de Rotación
    Espectroscopía Molecular
    chorros supersónicos
    Microsolvatacion
    Grafeno
    Materias Unesco
    2210.20
    2206.07 Espectroscopia Molecular
    Palabras Clave
    ROTATIONAL SPECTROSCOPY
    GRAPHENE
    SPECTRA
    COMPLEX
    ISSN
    0002-7863
    Revisión por pares
    SI
    DOI
    10.1021/jacs.3c04281
    Patrocinador
    This work has been supported by the ERC Starting grant “ASTROROT” (grant agreement number 638027). D.L. acknowledges the support of an Alexander von Humboldt postdoctoral fellowship. Scientific exchange within the Centre for Molecular Water Science (CMWS) is acknowledged. J.C.L. thanks Ministerio de Ciencia e Innovación (grant PID2021-125207NB-C33) and Junta de Castilla y León (grant no. INFRARED-FEDER IR2020-1-UVa02) for research funds.
    Version del Editor
    https://pubs.acs.org/doi/10.1021/jacs.3c04281
    Propietario de los Derechos
    Copyright © 2023 The Authors. Published by American Chemical Society.
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/74578
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP63 - Artículos de revista [324]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    loru-et-al-2023-quantum-tunneling-facilitates-water-motion-across-the-surface-of-phenanthrene-1.pdf
    Tamaño:
    4.293Mb
    Formato:
    Adobe PDF
    Descripción:
    Articulo Principal
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10