Show simple item record

dc.contributor.authorCalabrese, Camilla
dc.contributor.authorÉcija, Patricia
dc.contributor.authorCompañón, Ismael
dc.contributor.authorVallejo López, Montserrat
dc.contributor.authorCimas, Álvaro
dc.contributor.authorParra, Maider
dc.contributor.authorBasterretxea, Francisco José
dc.contributor.authorSantos, José I.
dc.contributor.authorJiménez Barbero, Jesús
dc.contributor.authorLesarri Gómez, Alberto Eugenio 
dc.contributor.authorCorzana, Francisco
dc.contributor.authorCocinero, Emilio José
dc.date.accessioned2025-01-29T14:46:54Z
dc.date.available2025-01-29T14:46:54Z
dc.date.issued2019
dc.identifier.citationJ. Phys. Chem. Lett. 2019, 10, 3339−3345es
dc.identifier.issn1948-7185es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74594
dc.description.abstractUnderstanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated β-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more effective than for the β derivative. Markedly, the main conformers found in the gas phase and solution are characterized by the lack of the stabilizing anomeric effect. From a mechanistic perspective, both rotational spectroscopy and solid-state nuclear magnetic resonance (NMR) corroborate that α ↔ β or furanose ↔ pyranose interconversions are prevented in the gas phase. Combining microwave (MW) and NMR results provides a powerful method for unraveling the water role in the conformational preferences of challenging molecules, such as flexible monosaccharides.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleConformational Behavior of d-Lyxose in Gas and Solution Phases by Rotational and NMR Spectroscopieses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1021/acs.jpclett.9b00978es
dc.identifier.publicationfirstpage3339es
dc.identifier.publicationissue12es
dc.identifier.publicationlastpage3345es
dc.identifier.publicationtitleThe Journal of Physical Chemistry Letterses
dc.identifier.publicationvolume10es
dc.peerreviewedSIes
dc.identifier.essn1948-7185es
dc.rightsCC0 1.0 Universal*
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record