• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74594

    Título
    Conformational Behavior of d-Lyxose in Gas and Solution Phases by Rotational and NMR Spectroscopies
    Autor
    Calabrese, Camilla
    Écija, Patricia
    Compañón, Ismael
    Vallejo López, Montserrat
    Cimas, Álvaro
    Parra, Maider
    Basterretxea, Francisco José
    Santos, José I.
    Jiménez Barbero, Jesús
    Lesarri Gómez, Alberto EugenioAutoridad UVA Orcid
    Corzana, Francisco
    Cocinero, Emilio José
    Año del Documento
    2019
    Documento Fuente
    J. Phys. Chem. Lett. 2019, 10, 3339−3345
    Resumo
    Understanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated β-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more effective than for the β derivative. Markedly, the main conformers found in the gas phase and solution are characterized by the lack of the stabilizing anomeric effect. From a mechanistic perspective, both rotational spectroscopy and solid-state nuclear magnetic resonance (NMR) corroborate that α ↔ β or furanose ↔ pyranose interconversions are prevented in the gas phase. Combining microwave (MW) and NMR results provides a powerful method for unraveling the water role in the conformational preferences of challenging molecules, such as flexible monosaccharides.
    ISSN
    1948-7185
    Revisión por pares
    SI
    DOI
    10.1021/acs.jpclett.9b00978
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74594
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP63 - Artículos de revista [324]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    MS_Lyxose_2018_draft9.docx
    Tamaño:
    5.449Mb
    Formato:
    Documento Word
    Descripción:
    Borrador
    Visualizar/Abrir
    CC0 1.0 UniversalExceto quando indicado o contrário, a licença deste item é descrito como CC0 1.0 Universal

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10