• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74895

    Título
    F.A.I.R. open dataset of brushed DC motor faults for testing of AI algorithms
    Autor
    Reñones Domínguez, Aníbal
    Galende Hernández, MartaAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    Ediciones Universidad de Salamanca
    Descripción
    Producción Científica
    Documento Fuente
    ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9(4), 83-94
    Résumé
    Practical research in AI often lacks of available and reliable datasets so the practitioners can try different algorithms. The field of predictive maintenance is particularly challenging in this aspect as many researchers don't have access to full-size industrial equipment or there is not available datasets representing a rich information content in different evolutions of faults. In this paper, it is presented a dataset with evolution of typical faults (commutator, winding and brush wear) in inexpensive DC motors under extensive monitoring (vibration, temperature, voltage, current and noise). These motors exhibit a particularly short useful life when operating out of nominal conditions (from 30 minutes to 6 hours) which make them very interesting to test different signal processing algorithms and introduce students and researchers into signal processing, fault detection and predictive maintenance. The paper explains in detail the experimentation and the structure of the real, un-processed, dataset published in the AI4EU platform with the aim of complying with the FAIR principle so the dataset is Findable, Accessible, Interoperable and Reusable.
    Palabras Clave
    Open data
    Artificial intelligence
    Fault diagnosis
    Predictive maintenance
    DC motor
    ISSN
    2255-2863
    Revisión por pares
    SI
    DOI
    10.14201/ADCAIJ2020948394
    Patrocinador
    European Regional Development Fund (ERDF) of the European Union and the “Junta de Castilla y León” regional government (ref: CCTT1/17/VA/0003)
    Version del Editor
    https://revistas.usal.es/cinco/index.php/2255-2863/article/view/ADCAIJ2020948394
    Propietario de los Derechos
    © 2020 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74895
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    2020-ADCAIJ-DCmotorFAIRdataset.pdf
    Tamaño:
    1.647Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10