Mostrar el registro sencillo del ítem

dc.contributor.authorRey Díez, María Isabel
dc.contributor.authorGalende Hernández, Marta 
dc.contributor.authorSáinz Palmero, Gregorio Ismael 
dc.contributor.authorFuente Aparicio, María Jesús de la 
dc.date.accessioned2025-02-17T15:26:23Z
dc.date.available2025-02-17T15:26:23Z
dc.date.issued2013
dc.identifier.citation2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad, India, 2013, pp. 1-8es
dc.identifier.isbn978-1-4799-0022-0es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75071
dc.descriptionProducción Científicaes
dc.description.abstractFuzzy modeling is one of the best known techniques to model systems and processes. In most cases, as in data-driven fuzzy modeling, these fuzzy models reach a high accuracy, but show poor performance in complexity or interpretability, which are key aspects of Fuzzy Logic. There are several approaches in the literature to deal with the complexity and interpretability challenges for fuzzy rule based systems (FRBSs). In this paper, a post-processing approach is proposed via a genetic rule selection based on the relevance of each rule (using Orthogonal Transformations (OTs), in this case P-QR) and the well-known accuracy-interpretability trade-off. The main objective is to check the true significance, drawbacks and advantages of the rule selection based on OTs to manage the accuracy-interpretability trade-off. In order to achieve this aim, a neuro-fuzzy system (FasArtFuzzy Adaptive System ART based) and several case studies from the KEEL Project Repository are used to tune and check this selection of rules based on rule relevance by OTs, genetic selection and accuracy-interpretability trade-off. This neuro-fuzzy system generates Mamdani FRBSs, in an approximate way. SPEA2 is the multi-objective evolutionary algorithm (MOEA) tool used to tune the proposed rule selection, and different interpretability measures have been considered.es
dc.format.extent9 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationFRBSes
dc.subject.classificationOrthogonal Transformationses
dc.subject.classificationInterpretabilityes
dc.subject.classificationGenetic Algorithmes
dc.titleSelection of rules by orthogonal transformations and genetic algorithms to improve the interpretability in fuzzy rule based systemses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holderIEEEes
dc.identifier.doi10.1109/FUZZ-IEEE.2013.6622357es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/6622357es
dc.title.event2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)es
dc.description.projectSpanish Ministry of Science and Innovation under grants nos. DPI2009-14410- C02-02 and DPI2012-39381-C02-02es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem