• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75160

    Título
    A neural network to retrieve cloud cover from all‐sky cameras: A case of study over Antarctica
    Autor
    González Fernández, DanielAutoridad UVA
    Román Díez, RobertoAutoridad UVA Orcid
    Antuña Sánchez, Juan CarlosAutoridad UVA Orcid
    Cachorro Revilla, Victoria EugeniaAutoridad UVA Orcid
    Copes, Gustavo
    Herrero Anta, SaraAutoridad UVA Orcid
    Herrero del Barrio, CeliaAutoridad UVA Orcid
    Barreto, África
    González Caton, RamiroAutoridad UVA Orcid
    Ramos, Ramón
    Martín Sánchez, Patricia
    Mateos Villán, DavidAutoridad UVA Orcid
    Toledano Olmeda, CarlosAutoridad UVA Orcid
    Calle Montes, AbelAutoridad UVA Orcid
    Frutos Baraja, Ángel Máximo deAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    Quarterly Journal of the Royal Meteorological Society, 2024, vol. 150, n. 764, A, p. 4631-4649
    Resumen
    We present a new model based on a convolutional neural network (CNN) to predict daytime cloud cover (CC) from sky images captured by all-sky cameras, which is called CNN-CC. A total of 49,016 daytime sky images, recorded at different Spanish locations (Valladolid, La Palma, and Izaña) from two different all-sky camera types, are manually classified into different CC (oktas) values by trained researchers. Subsequently, the images are randomly split into a training set and a test set to validate the model. The CC values predicted by the CNN-CC model are compared with the observations made by trained people on the test set, which serve as reference. The predicted CC values closely match the reference values within ±1 oktas in 99% of the cloud-free and overcast cases. Moreover, this percentage is above 93% for the rest of partially cloudy cases. The mean bias error (MBE) and standard deviation (SD) of the differences between the predicted and reference CC values are calculated, resulting in MBE = 0.007 oktas and SD = 0.674 oktas. The MBE and SD are also represented for different intervals of measured aerosol optical depth and Ångström exponent values, revealing that the performance of the CNN-CC model does not depend on aerosol load or size. Once the model is validated, the CC obtained from a set of images captured every 5 min, from January 2018 to March 2022, at the Antarctic station of Marambio (Argentina) is compared against direct field observations of CC (not from images) taken at this location, which is not used in the training process. As a result, the model slightly underestimates the observations with an MBE of −0.3 oktas. The retrieved data are analyzed in detail. The monthly and annual CC values are calculated. Overcast conditions are the most frequent, accounting for 46.5% of all observations throughout the year, rising to 64.5% in January. The annual mean CC value at this location is 5.5 oktas, with a standard deviation of approximately 3.1 oktas. A similar analysis is conducted, separating data by hours, but no significant diurnal cycles are observed except for some isolated months.
    Materias Unesco
    2509 Meteorología
    1203.04 Inteligencia Artificial
    Palabras Clave
    AI
    all-sky camera
    Antarctic
    cloud cover
    convolutional neural network
    image identification
    ISSN
    0035-9009
    Revisión por pares
    SI
    DOI
    10.1002/qj.4834
    Patrocinador
    Ministerio de Ciencia e Innovación (PID2021-127588OB-I00, TED2021-131211B-I00)
    Junta de Castilla y León (VA227P20)
    Version del Editor
    https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4834
    Propietario de los Derechos
    © 2024 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75160
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP33 - Artículos de revista [197]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    neural-network-retrieve-cloud-cover-all‐sky-cameras-case-study-antarctica.pdf
    Tamaño:
    10.66Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10