Mostrar el registro sencillo del ítem

dc.contributor.authorMerino-Caviedes, Susana
dc.contributor.authorMartín-Fernández, Marcos
dc.contributor.authorPérez Rodríguez, María Teresa 
dc.contributor.authorMartín-Fernández, Miguel Ángel
dc.contributor.authorFilgueiras-Rama, David
dc.contributor.authorSimmross-Wattenberg, Federico
dc.contributor.authorAlberola-López, Carlos
dc.date.accessioned2025-03-19T09:00:59Z
dc.date.available2025-03-19T09:00:59Z
dc.date.issued2024
dc.identifier.citationComputers in Biology and Medicine, Febrero 2024, vol. 169, p. 107855.es
dc.identifier.issn0010-4825es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75371
dc.descriptionProducción Científicaes
dc.description.abstractCardiac Magnetic Resonance (CMR) Imaging is currently considered the gold standard imaging modality in cardiology. However, it is accompanied by a tradeoff between spatial resolution and acquisition time. Providing accurate measures of thin walls relative to the image resolution may prove challenging. One such anatomical structure is the cardiac right ventricle. Methods for measuring thickness of wall-like anatomical structures often rely on the Laplace equation to provide point-to-point correspondences between both boundaries. This work presents limex, a novel method to solve the Laplace equation using ghost nodes and providing extrapolated values, which is tested on three different datasets: a mathematical phantom, a set of biventricular segmentations from CMR images of ten pigs and the database used at the RV Segmentation Challenge held at MICCAI'12. Thickness measurements using the proposed methodology are more accurate than state-of-the-art methods, especially with the coarsest image resolutions, yielding mean L_1 norms of the error between 43.28% and 86.52% lower than the second-best methods on the different test datasets. It is also computationally affordable. Limex has outperformed other state-of-the-art methods in classifying RV myocardial segments by their thickness.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationLaplace equation, Ghost Node Methods, Right Ventricle, Wall Thickness, Cardiac Magnetic Resonancees
dc.titleComputing thickness of irregularly-shaped thin walls using a locally semi-implicit scheme with extrapolation to solve the Laplace equation: Application to the right ventriclees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doi10.1016/j.compbiomed.2023.107855es
dc.relation.publisherversionhttps://doi.org/10.1016/j.compbiomed.2023.107855es
dc.identifier.publicationfirstpage107855es
dc.identifier.publicationtitleComputers in Biology and Medicinees
dc.identifier.publicationvolume169es
dc.peerreviewedSIes
dc.description.projectThis work was supported in part by the spanish Agencia Estatal de Investigación, under Grants PID2020-115339RB-I00 and TED2021-130090B-I00, and by the company ESAOTE Ltd by grant 18IQBM.es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem